Давайте теперь складывать две такие волны. Пусть первая волна распространяется с одной частотой, а вторая волна — с какой-то другой. Случай неравных амплитуд рассмотрите самостоятельно, хотя существенного отличия здесь нет. Таким образом, мы хотим сложить exp[i(w 1t-k 1x)]+exp [ i ( w 2 t - k 2 x )]. Это можно сделать с помощью математики, аналогичной использованной нами при сложении двух сигналов. Если скорости с обеих волн одинаковы, то сделать это очень легко; за исключением того, что вместо t стоит t ' = t - х/с, это будет то же

самое, что мы недавно проделали:
При этом, естественно, мы получаем точно такие же модуляции, как и раньше, которые, однако, движутся вместе с волной. Другими словами, если сложить две волны, которые не просто осциллируют, но и перемещаются в пространстве, то получившаяся волна также будет двигаться с той же скоростью.

Хотелось бы обобщить это на случай волн, у которых отношение между частотой и волновым числом k не столь просто, например распространение волн в веществе с некоторым показателем преломления. В гл. 31 (вып. 3) мы уже изучали показатель преломления n и выяснили, что он связан с волновым числом следующим образом: А=nw/с. В качестве интересного примера мы нашли показатель преломления n для рентгеновских лучей:
На самом деле в гл. 31 мы получали и более сложные формулы, однако эта ничуть не хуже, так почему бы нам не взять ее в качестве примера.
Нам известно, что даже в том случае, когда w и k не пропорциональны друг другу, отношение w/k все равно будет скоростью распространения данной частоты и данного волнового числа. Это отношение называется фазовой скоростью, т. е. скоростью, с которой движется фаза или узел отдельной волны:
v фаз=w/k. (48.13)
Интересно, что, например, для случая распространения рентгеновских лучей в стекле эта фазовая скорость больше скорости света в пустоте [поскольку n, согласно (48.12), меньше единицы], а это несколько неприятно, ведь не думаем же мы, что можно посылать сигналы быстрее скорости света!
Обсудим теперь интерференцию двух волн, у которых значения w и k связаны какой-то определенной зависимостью. Например, написанная ранее формула для показателя n говорит, что k есть определенная известная функция частоты w. Для большей определенности давайте выпишем формулу зависимости k и w в данной частной задаче:
k = w / c - a / w c (48.14)
где a = Nq 2 e /2 e 0 m — постоянная. Во всяком случае, мы хотим сложить такие две волны, у которых для каждой частоты существует определенное волновое число.
Давайте сделаем это точно так же, как и при получении уравнения (48.7):

Таким образом, снова получается модулированная волна, распространяющаяся со средней частотой и средним волновым числом, однако сила ее меняется в соответствии с выражением, зависящим от разности частот и разности волновых чисел.
Рассмотрим теперь случай, когда разности между двумя волнами относительно малы. Предположим, что мы складываем две волны с приблизительно равными частотами, при этом (w 1+w 2)/2 практически равно каждой из частот w. То же можно сказать и о (k 1+k 2)/2. Таким образом, скорость волны, быстрых осцилляции, узлов действительно остается равной w/k. Но смотрите, скорость распространения модуляций не та же самая! Как нужно изменить х, чтобы сбалансировать некоторую величину времени t? Скорость этих модулирующих волн равна
v M =(w 1-w 2)/(k 1-k 2). (48.16)

Скорость движения модуляций иногда называют групповой скоростью. Если мы возьмем случай относительно малой разности между частотами и соответственно относительно малой разности между волновыми числами, то это выражение переходит в пределе в
Другими словами, чем медленнее модуляции, тем медленнее и биения, и вот что самое удивительное — существует определенная скорость их распространения, которая не равна фазовой скорости волны.
Читать дальше