FIGURA 1.4.1.1 Sección de referencia empleada en Europa, para determinar propiedades de flexión fuera del plano y tracción y compresión en el plano.
La determinación de la resistencia a la tracción axial sin embargo sí es diferente según el método europeo. En Europa se asume que por lo general un elemento de CLT suele tener alrededor de 12 tablones trabajando en paralelo al ser sometido a una carga axial, así es que se aplica un factor de carga compartida (ksys, similar a Kc en Chile) lo que permite considerar el hecho de que los tablones de mayor calidad suelen absorber mayor carga por tener mayor rigidez. De esta forma, en la determinación del valor característico de tracción paralela según el método ELU para ambas direcciones (ft,x,k y ft,y,k), se suele considerar que es un 20% superior a la resistencia paralela de un único tablón (ft,0,l,k)
En la ecuación anterior se asume que ft,0,l,k tiene una covarianza de aproximadamente el 25%; en caso de que la covarianza fuese superior, la mayoración de carga compartida se incrementaría aún más. Para una madera de calidad C24, ft,x,k ≈16 N/mm2.
Tracción paralela a las láminas externas
Ver una ilustración de esta solicitación y la idealización de tensiones únicamente en A0,net en la Figura 1.4.1.2.
FIGURA 1.4.1.2 Tracción paralela a las láminas externas e idealización de las tensiones axiales únicamente en A0,net (después de Wallner-Novak et al. 2013).
Tracción perpendicular a las láminas externas
Ver la solicitación e idealización de tensiones en la Figura 1.4.1.3.
FIGURA 1.4.1.3 Tracción perpendicular a las láminas externas e idealización de las tensiones axiales únicamente en A0,net (después de Wallner-Novak et al. 2013).
1.4.2 Tracción perpendicular a la placa
Tanto la normativa NDS como la europea consideran que esta resistencia es similar a la MLE; de hecho, en Europa se propone el mismo ensayo para su caracterización. En efecto, la resistencia a la tracción perpendicular debería de ser similar a la MLE, ya que independientemente de la orientación de las fibras en el plano, la tracción perpendicular provoca el modo I de apertura, así es que se aconseja considerar igualmente
En el caso de verificaciones según el EC5, se propone para la especie C24 utilizar
Con respecto al área resistente a la solicitación, esta debería analizarse en cada caso por separado. Para bastantes situaciones en las que debe transferirse una tracción perpendicular, la propia resistencia a la extracción de tornillos autoperforantes suele ser suficiente (se detalla en la Sección 1.5.8); sin embargo, para transferir grandes cargas, se aconseja emplear un conector pasante que pueda transformar la solicitación en una compresión (y cortante) puntual - ver una ilustración en la Figura 1.4.2, y detalles de la verificación de compresión perpendicular en la Sección 1.4.4 y del cortante provocado por una carga puntual en la Sección 1.6.2.3. El lector debe notar que igualmente, en la actualidad, se están desarrollando diferentes propuestas para el análisis de vigas curvas o/y canto variable de CLT por lo que en principio muchas de las expresiones para el cálculo de distribución de tensiones y verificaciones de la MLE/LVL, no son directamente aplicables al CLT en la actualidad. En concreto se está verificando hasta qué punto las ecuaciones de vigas curvas de MLE y LVL son aplicables a vigas curvas de CLT.
FIGURA 1.4.2 Tracción perpendicular a la placa. Para cargas bajas, la carga puede transferirse al panel mediante la resistencia a la extracción directa de tornillos, para cargas elevadas, se aconseja emplear un conector pasante que pueda transformar la carga en una fuerza de compresión y corte puntual (después de Wallner-Novak et al. 2013).
1.4.3 Compresión paralela a la placa
Al igual que con la tracción, con la compresión se considera que únicamente A0,net es efectiva. Sin embargo, en este caso es posible que el panel no apoye completamente en todo su ancho b, sino que únicamente reposa sobre un apoyo (Aapoy). Típicamente se considera pues, que el área efectiva es únicamente aquella que está en contacto con el apoyo (al igual que en la verificación clásica de compresión normal), y cuyas fibras son paralelas al sentido de la fuerza, es decir Aapoy,0,net, ver Figuras 1.4.3.1-2.
O en el caso de que apoye completamente, podríamos también aplicar directamente
O si es que el productor proporciona el esfuerzo admisible para el producto en cuestión
Y por supuesto, la verificación de compresión en y sería análoga a la de tracción paralela. Por lo demás, la verificación según ASD similar a la verificación de una columna de madera aserrada o MLE. Con respecto a la resistencia a la compresión paralela, tanto en el método europeo como el norteamericano, se considera que la resistencia es similar a la de las láminas que lo componen, por lo que se recomienda emplear los mismos valores que la MLE.
También se considera que existe riesgo de inestabilidad por pandeo, en el caso de que la esbeltez de inestabilidad por pandeo λ≥10. En caso de que el panel apoye en todo su ancho, la verificación resulta simplemente
En caso de que el panel no apoye en toda la base, sino en superficies de apoyo discretas, entonces debemos verificar que
Donde, en este caso el axil de compresión por unidad de ancho, se ha modificado artificialmente para poder considerar el efecto de la distribución de tensiones que se muestra en la Figura 1.4.3.1. En efecto, en general las tensiones de compresión paralela se distribuyen en un ancho superior al propio ancho del apoyo, el cual puede estimarse como
Para apoyos internos del panel, y
Para apoyos exteriores. De este modo podemos estimar el esfuerzo reducido por incrementarse el área de distribución por simple relación lineal
FIGURA 1.4.3.1 Incremento del ancho de distribución de tensiones al apoyar un panel de CLT sobre apoyos discretos en bordes o interiores, y posterior modificación artificial del esfuerzo por metro de ancho para considerar esta situación (modificado de Wallner-Novak et al. 2013).
Con respecto al coeficiente de modificación por pandeo, se recomienda aplicar el método del CLT Handbook USA
Читать дальше