Anil K. Chopra - Earthquake Engineering for Concrete Dams

Здесь есть возможность читать онлайн «Anil K. Chopra - Earthquake Engineering for Concrete Dams» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Earthquake Engineering for Concrete Dams: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Earthquake Engineering for Concrete Dams»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive guide to modern-day methods for earthquake engineering of concrete dams Earthquake analysis and design of concrete dams has progressed from static force methods based on seismic coefficients to modern procedures that are based on the dynamics of dam–water–foundation systems.
offers a comprehensive, integrated view of this progress over the last fifty years. The book offers an understanding of the limitations of the various methods of dynamic analysis used in practice and develops modern methods that overcome these limitations. 
This important book:
Develops procedures for dynamic analysis of two-dimensional and three-dimensional models of concrete dams Identifies system parameters that influence their response Demonstrates the effects of dam–water–foundation interaction on earthquake response Identifies factors that must be included in earthquake analysis of concrete dams Examines design earthquakes as defined by various regulatory bodies and organizations Presents modern methods for establishing design spectra and selecting ground motions Illustrates application of dynamic analysis procedures to the design of new dams and safety evaluation of existing dams. Written for graduate students, researchers, and professional engineers,
offers a comprehensive view of the current procedures and methods for seismic analysis, design, and safety evaluation of concrete dams.

Earthquake Engineering for Concrete Dams — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Earthquake Engineering for Concrete Dams», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.6.10c) Earthquake Engineering for Concrete Dams - изображение 225

with the generalized mass, damping and force of the equivalent SDF system given by Eq. (2.6.10), a comparison of Eqs. (2.6.7)and (2.6.1)shows that Earthquake Engineering for Concrete Dams - изображение 226 , i.e. the equivalent SDF system gives the exact value for the fundamental resonant response of the dam–water system.

The natural vibration frequency, Earthquake Engineering for Concrete Dams - изображение 227, of the equivalent SDF system is Earthquake Engineering for Concrete Dams - изображение 228; substituting Earthquake Engineering for Concrete Dams - изображение 229and Eq. (2.6.10a)for gives 2611 Because appears on both sides this equation m - фото 230, gives

(2.6.11) Because appears on both sides this equation must be solved iteratively for - фото 231

Because картинка 232appears on both sides, this equation must be solved iteratively for картинка 233. Hydrodynamic effects always reduce the natural vibration frequency because Re[ B 1( ω )] > 0 for all excitation frequencies. Does Eq. (2.6.11), determined from the properties of the equivalent SDF system, give the correct reduction in frequency of the dam due to dam–water interaction? The fundamental resonant frequency of the dam–water system is approximately given by the excitation frequency that makes the real‐valued component of the denominator in the exact fundamental mode response, Eq. (2.6.1), equal to zero. This argument also leads to Eq. (2.6.11), which demonstrates that the mass of the equivalent SDF system defined in Eqs. (2.6.5)and (2.6.6)reduces the fundamental resonant frequency of the dam due to hydrodynamic effects by the exact amount.

The damping ratio of the equivalent SDF system Earthquake Engineering for Concrete Dams - изображение 234is determined by substituting Eqs. (2.6.10b)and (2.6.10a)and utilizing Eq. (2.6.11):

(2.6.12) Earthquake Engineering for Concrete Dams - изображение 235

in which the added damping due to upstream propagation of hydrodynamic waves and their absorption at the reservoir bottom is represented by the frequency‐independent damping ratio, ζ r, defined as

(2.6.13) The damping ratio ζ ris nonnegative because Im B 1 ω 0 for all - фото 236

The damping ratio ζ ris non‐negative because Im[ B 1( ω )] ≤ 0 for all excitation frequencies.

For dam–water systems with non‐absorptive reservoir bottom ( α = 1), Earthquake Engineering for Concrete Dams - изображение 237is real‐valued ( Section 2.3). Thus, m a( y ) is real‐valued and Eq. (2.6.11)reduces to the earlier result (Chopra 1978) for the natural vibration frequency of the equivalent SDF system; and the added damping ratio, ζ r, is zero, so Eq. (2.6.13)reduces to the earlier expression (Chopra 1978) for the damping ratio of the equivalent SDF system. An absorptive reservoir bottom ( α < 1) results in complex‐valued m a( y ), which modifies the resonant frequency and increases the damping because now hydrodynamic pressure waves propagate upstream and refract into the absorptive reservoir bottom at the excitation frequency, картинка 238.

2.6.2 Evaluation of Equivalent SDF System

The effectiveness of the equivalent SDF system in representing the fundamental mode response of dams with impounded water is demonstrated in Figure 2.6.1. The exact and equivalent‐SDF‐system responses of an idealized concrete gravity dam monolith with the triangular cross section (described in Section 2.5.2) to harmonic horizontal ground motion were computed by numerically evaluating Eqs. (2.6.1)and (2.6.7), respectively. The absolute value of the complex‐valued frequency response function for horizontal acceleration at the dam crest is plotted against the normalized excitation frequency parameter, ω / ω 1, so the results are valid for dams of any height, H s. Figure 2.6.1demonstrates that the equivalent SDF system provides a good approximation of the fundamental mode response of the dam with impounded water for a wide range of values of the frequency ratio Ω r– hence of the concrete modulus, E s– and of the wave reflection coefficient, α , at the reservoir bottom. The approximation of the frequency bandwidth of the resonant peak is more accurate if the reservoir bottom is absorptive because additional energy is lost at this boundary, which eliminates the sharp peaks in the response curves.

Figure 261Comparison of exact and equivalent SDF system response of dams on - фото 239

Figure 2.6.1Comparison of exact and equivalent SDF system response of dams on rigid foundation with impounded water due to harmonic horizontal ground motion; ζ 1= 2%.

The exact value of the fundamental resonant period, obtained from the resonant peak of Earthquake Engineering for Concrete Dams - изображение 240, computed from Eq. (2.6.1), is compared in Figure 2.6.2with the natural vibration period, Earthquake Engineering for Concrete Dams - изображение 241, of the equivalent SDF system in which картинка 242is computed from Eq. (2.6.11). It is apparent that the natural vibration period of the equivalent SDF system provides a very accurate approximation of the fundamental resonant period of the dam with impounded water if the reservoir bottom is non‐absorptive, but it is slightly less accurate if the reservoir bottom is absorptive.

2.6.3 Hydrodynamic Effects on Natural Frequency and Damping Ratio

Figure 2.6.2demonstrates that dam–water interaction lengthens the vibration period, with this effect being especially small for H / H s, less than 0.5, but increasing rapidly with water depth (Chakrabarti and Chopra 1974). Furthermore, the vibration period ratio, картинка 243, increases as the frequency ratio, Ω r, decreases (i.e. the modulus of elasticity, E s, of the concrete increases) because of interaction between the closely‐spaced fundamental vibration frequencies of the dam and water ( Section 2.5.3); these observations first appeared in Chopra (1968). As the reservoir bottom becomes more absorptive, i.e. as the wave reflection coefficient α decreases, the fundamental resonant period is reduced from its value for a non‐absorptive reservoir bottom. This occurs because reservoir bottom absorption reduces the hydrodynamic terms ( Section 2.3.3), thus reducing the value of the added mass. The wave reflection coefficient, α , has little influence on the fundamental resonant period for larger values of Ω r, i.e. smaller values of E s. However, the картинка 244ratio is relatively insensitive to E sif the reservoir bottom is absorptive with α ≤ 0.5.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Earthquake Engineering for Concrete Dams»

Представляем Вашему вниманию похожие книги на «Earthquake Engineering for Concrete Dams» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Earthquake Engineering for Concrete Dams»

Обсуждение, отзывы о книге «Earthquake Engineering for Concrete Dams» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x