Anil K. Chopra - Earthquake Engineering for Concrete Dams

Здесь есть возможность читать онлайн «Anil K. Chopra - Earthquake Engineering for Concrete Dams» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Earthquake Engineering for Concrete Dams: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Earthquake Engineering for Concrete Dams»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive guide to modern-day methods for earthquake engineering of concrete dams Earthquake analysis and design of concrete dams has progressed from static force methods based on seismic coefficients to modern procedures that are based on the dynamics of dam–water–foundation systems.
offers a comprehensive, integrated view of this progress over the last fifty years. The book offers an understanding of the limitations of the various methods of dynamic analysis used in practice and develops modern methods that overcome these limitations. 
This important book:
Develops procedures for dynamic analysis of two-dimensional and three-dimensional models of concrete dams Identifies system parameters that influence their response Demonstrates the effects of dam–water–foundation interaction on earthquake response Identifies factors that must be included in earthquake analysis of concrete dams Examines design earthquakes as defined by various regulatory bodies and organizations Presents modern methods for establishing design spectra and selecting ground motions Illustrates application of dynamic analysis procedures to the design of new dams and safety evaluation of existing dams. Written for graduate students, researchers, and professional engineers,
offers a comprehensive view of the current procedures and methods for seismic analysis, design, and safety evaluation of concrete dams.

Earthquake Engineering for Concrete Dams — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Earthquake Engineering for Concrete Dams», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Preface

3 Acknowledgments

4 1 Introduction1.1 EARTHQUAKE EXPERIENCE: CASES WITH STRONGEST SHAKING 1.2 COMPLEXITY OF THE PROBLEM 1.3 TRADITIONAL DESIGN PROCEDURES: GRAVITY DAMS 1.4 TRADITIONAL DESIGN PROCEDURES: ARCH DAMS 1.5 UNREALISTIC ESTIMATION OF SEISMIC DEMAND AND STRUCTURAL CAPACITY 1.6 REASONS WHY STANDARD FINITE‐ELEMENT METHOD IS INADEQUATE 1.7 RIGOROUS METHODS 1.8 SCOPE AND ORGANIZATION NOTES

5 Part I: GRAVITY DAMS 2 Fundamental Mode Response of Dams Including Dam–Water InteractionPREVIEW 2.1 SYSTEM AND GROUND MOTION 2.2 DAM RESPONSE ANALYSIS 2.3 HYDRODYNAMIC PRESSURES 2.4 DAM RESPONSE ANALYSIS INCLUDING DAM–WATER INTERACTION 2.5 DAM RESPONSE 2.6 EQUIVALENT SDF SYSTEM: HORIZONTAL GROUND MOTION APPENDIX 2: WAVE-ABSORPTIVE RESERVOIR BOTTOM NOTES 3 Fundamental Mode Response of Dams Including Dam–Water–Foundation InteractionPREVIEW 3.1 SYSTEM AND GROUND MOTION 3.2 DAM RESPONSE ANALYSIS INCLUDING DAM–FOUNDATION INTERACTION 3.3 DAM–FOUNDATION INTERACTION 3.4 EQUIVALENT SDF SYSTEM: DAM–FOUNDATION SYSTEM 3.5 EQUIVALENT SDF SYSTEM: DAM–WATER–FOUNDATION SYSTEM APPENDIX 3: EQUIVALENT SDF SYSTEM NOTES 4 Response Spectrum Analysis of Dams Including Dam–Water–Foundation InteractionPREVIEW 4.1 EQUIVALENT STATIC LATERAL FORCES: FUNDAMENTAL MODE 4.2 EQUIVALENT STATIC LATERAL FORCES: HIGHER MODES 4.3 RESPONSE ANALYSIS 4.4 STANDARD PROPERTIES FOR FUNDAMENTAL MODE RESPONSE 4.5 COMPUTATIONAL STEPS 4.6 CADAM COMPUTER PROGRAM 4.7 ACCURACY OF RESPONSE SPECTRUM ANALYSIS PROCEDURE NOTES 5 Response History Analysis of Dams Including Dam–Water–Foundation InteractionPREVIEW 5.1 DAM–WATER–FOUNDATION SYSTEM 5.2 FREQUENCY‐DOMAIN EQUATIONS: DAM SUBSTRUCTURE 5.3 FREQUENCY‐DOMAIN EQUATIONS: FOUNDATION SUBSTRUCTURE 5.4 DAM–FOUNDATION SYSTEM 5.5 FREQUENCY–DOMAIN EQUATIONS: FLUID DOMAIN SUBSTRUCTURE 5.6 FREQUENCY‐DOMAIN EQUATIONS: DAM–WATER–FOUNDATION SYSTEM 5.7 RESPONSE HISTORY ANALYSIS 5.8 EAGD‐84 COMPUTER PROGRAM APPENDIX 5:WATER–FOUNDATION INTERACTION NOTE 6 Dam–Water–Foundation Interaction Effects in Earthquake ResponsePREVIEW 6.1 SYSTEM, GROUND MOTION, CASES ANALYZED, AND SPECTRAL ORDINATES 6.2 DAM–WATER INTERACTION 6.3 DAM–FOUNDATION INTERACTION 6.4 DAM–WATER–FOUNDATION INTERACTION EFFECTS 7 Comparison of Computed and Recorded Earthquake Responses of DamsPREVIEW 7.1 COMPARISON OF COMPUTED AND RECORDED MOTIONS 7.2 KOYNA DAM CASE HISTORY APPENDIX 7: SYSTEM PROPERTIES

6 Part II: ARCH DAMS 8 Response History Analysis of Arch Dams Including Dam–Water–Foundation InteractionPREVIEW 8.1 SYSTEM AND GROUND MOTION 8.2 FREQUENCY‐DOMAIN EQUATIONS: DAM SUBSTRUCTURE 8.3 FREQUENCY‐DOMAIN EQUATIONS: FOUNDATION SUBSTRUCTURE 8.4 DAM–FOUNDATION SYSTEM 8.5 FREQUENCY‐DOMAIN EQUATIONS: FLUID DOMAIN SUBSTRUCTURE 8.6 FREQUENCY‐DOMAIN EQUATIONS: DAM–WATER–FOUNDATION SYSTEM 8.7 RESPONSE HISTORY ANALYSIS 8.8 EXTENSION TO SPATIALLY VARYING GROUND MOTION 8.9 EACD‐3D‐2008 COMPUTER PROGRAM NOTES 9 Earthquake Analysis of Arch Dams: Factors to Be IncludedPREVIEW 9.1 DAM–WATER–FOUNDATION INTERACTION EFFECTS 9.2 BUREAU OF RECLAMATION ANALYSES 9.3 INFLUENCE OF SPATIAL VARIATIONS IN GROUND MOTIONS NOTE 10 Comparison of Computed and Recorded MotionsPREVIEW 10.1 EARTHQUAKE RESPONSE OF MAUVOISIN DAM 10.2 EARTHQUAKE RESPONSE OF PACOIMA DAM 10.3 CALIBRATION OF NUMERICAL MODEL: DAMPING NOTE 11 Nonlinear Response History Analysis of DamsPREVIEW PART A: NONLINEAR MECHANISMS AND MODELING11.1 LIMITATIONS OF LINEAR DYNAMIC ANALYSES 11.2 NONLINEAR MECHANISMS 11.3 NONLINEAR MATERIAL MODELS 11.4 MATERIAL MODELS IN COMMERCIAL FINITE‐ELEMENT CODES PART B: DIRECT FINITE‐ELEMENT METHOD11.5 CONCEPTS AND REQUIREMENTS 11.6 SYSTEM AND GROUND MOTION 11.7 EQUATIONS OF MOTION 11.8 EFFECTIVE EARTHQUAKE FORCES 11.9 NUMERICAL VALIDATION OF THE DIRECT FINITE ELEMENT METHOD 11.10 SIMPLIFICATIONS OF ANALYSIS PROCEDURE 11.11 EXAMPLE NONLINEAR RESPONSE HISTORY ANALYSIS 11.12 CHALLENGES IN PREDICTING NONLINEAR RESPONSE OF DAMS NOTES

7 Part III: DESIGN AND EVALUATION 12 Design and Evaluation MethodologyPREVIEW 12.1 DESIGN EARTHQUAKES AND GROUND MOTIONS 12.2 PROGRESSIVE SEISMIC DEMAND ANALYSES 12.3 PROGRESSIVE CAPACITY EVALUATION 12.4 EVALUATING SEISMIC PERFORMANCE 12.5 POTENTIAL FAILURE MODE ANALYSIS NOTES 13 Ground‐Motion Selection and ModificationPREVIEW PART A: SINGLE HORIZONTAL COMPONENT OF GROUND MOTION 13.1 TARGET SPECTRUM 13.2 GROUND‐MOTION SELECTION AND AMPLITUDE SCALING 13.3 GROUND‐MOTION SELECTION TO MATCH TARGET SPECTRUM MEAN AND VARIANCE 13.4 GROUND‐MOTION SELECTION AND SPECTRAL MATCHING 13.5 AMPLITUDE SCALING VERSUS SPECTRAL MATCHING OF GROUND MOTIONS PART B: TWO HORIZONTAL COMPONENTS OF GROUND MOTION 13.6 TARGET SPECTRA 13.7 SELECTION, SCALING, AND ORIENTATION OF GROUND‐MOTION COMPONENTS PART C: THREE COMPONENTS OF GROUND MOTION 13.8 TARGET SPECTRA AND GROUND‐MOTION SELECTION NOTES 14 Application of Dynamic Analysis to Evaluate Existing Dams and Design New DamsPREVIEW 14.1 SEISMIC EVALUATION OF FOLSOM DAM 14.2 SEISMIC DESIGN OF OLIVENHAIN DAM 14.3 SEISMIC EVALUATION OF HOOVER DAM 14.4 SEISMIC DESIGN OF DAGANGSHAN DAM NOTE

8 References

9 Notation PART I: CHAPTERS 2–8 PART II: CHAPTERS 9–11 PART III: CHAPTERS 12–14

10 Index

11 End User License Agreement

List of Tables

1 Chapter 4Table 4.7.1 Pine Flat Dam analysis cases, fundamental mode properties, and corre...Table 4.7.2 “Exact” and approximate fundamental mode properties.

2 Chapter 6Table 6.1.1 Cases of Pine Flat Dam analyzed, fundamental mode properties, and ps...Table 6.2.1 Peak responses of Pine Flat Dam supported on rigid foundation to Taf...Table 6.3.1 Peak responses of Pine Flat Dam including dam–foundation interaction...

3 Chapter 10Table 10.3.1 Overall damping in 2D numerical model of Pine Flat Dam computed by ...

4 Chapter 14Table 14.2.1 Peak values of selected stresses (psi) during three ground motions ...

List of Illustrations

1 Chapter 1 Figure 1.1.1 Koyna Dam, India, constructed during 1954–1963; this dam is 103... Figure 1.1.2 Cross section of Koyna Dam showing water level during 1967 eart... Figure 1.1.3 Hsinfengkiang Dam, China. Completed in 1959, this dam is 105 m ... Figure 1.1.4 Cracking in Hsinfengkiang Dam, China, due to earthquake on Marc... Figure 1.1.5 Lower Crystal Springs Dam, California, USA. Built in 1888, this... Figure 1.1.6 Section view of the Lower Crystal Springs Dam (adapted from Nus... Figure 1.1.7 Pacoima Dam, California, USA. Completed in 1929, this dam is 11... Figure 1.1.8 Two‐inch separation between Pacoima Dam Arch (left) and the thr... Figure 1.1.9 Crack at the joint between the Pacoima Dam arch and the thrust ... Figure 1.1.10 Shih‐Kang Dam, Taiwan, (a) before and after the Chi‐Chi earthq... Figure 1.2.1 Olivenhain Dam, California, USA. Completed in 2003, this is a 3... Figure 1.2.2 Morrow Point Dam, Colorado, USA, a 465‐ft‐high single‐centered ... Figure 1.3.1 Maximum principal stresses in Koyna Dam at selected time instan... Figure 1.3.2 Comparison of uniform hazard spectrum and seismic coefficient f... Figure 1.3.3 Distribution of seismic coefficients over dam height in traditi... Figure 1.4.1 Distribution of seismic coefficients over the dam surface in th... Figure 1.6.1 Standard finite‐element analysis model with rigid, wave‐reflect... Figure 1.6.2 A popular finite‐element model that assumes foundation to have ... Figure 1.7.1 Gravity dam–water–foundation system. Figure 1.7.2 Arch dam–water–foundation system. Figure 1.7.3 Finite‐element model of a dam–water–foundation system with wave...

2 Chapter 2 Figure 2.1.1 Dam–water system. Figure 2.3.1 Acceleration excitations causing hydrodynamic pressures on the ... Figure 2.3.2 Hydrodynamic force on rigid dam due to horizontal ground accele... Figure 2.3.3 Hydrodynamic force on rigid dam due to vertical ground accelera... Figure 2.3.4 Body of water, assumed to be incompressible, moving with a rigi... Figure 2.5.1 Dam response to harmonic horizontal ground motion; frequency ra... Figure 2.5.2 Dam response to harmonic vertical ground motion; frequency rati... Figure 2.5.3 Dam response to harmonic horizontal ground motion; frequency ra... Figure 2.5.4 Dam response to harmonic vertical ground motion; frequency rati... Figure 2.5.5 Influence of frequency ratio, Ω r, on dam response to harmo... Figure 2.5.6 Influence of frequency ratio, Ω r, on dam response to harmo... Figure 2.5.7 Influence of frequency ratio, Ω r, on dam response to harmo... Figure 2.5.8 Influence of frequency ratio, Ω r, on dam response to harmo... Figure 2.6.1 Comparison of exact and equivalent SDF system response of dams ... Figure 2.6.2 Comparison of exact and approximate (equivalent SDF system) val... Figure 2.6.3 Added damping ratio

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Earthquake Engineering for Concrete Dams»

Представляем Вашему вниманию похожие книги на «Earthquake Engineering for Concrete Dams» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Earthquake Engineering for Concrete Dams»

Обсуждение, отзывы о книге «Earthquake Engineering for Concrete Dams» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x