Mohinder S. Grewal - Global Navigation Satellite Systems, Inertial Navigation, and Integration

Здесь есть возможность читать онлайн «Mohinder S. Grewal - Global Navigation Satellite Systems, Inertial Navigation, and Integration» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Global Navigation Satellite Systems, Inertial Navigation, and Integration: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Global Navigation Satellite Systems, Inertial Navigation, and Integration»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Covers significant changes in GPS/INS technology, and includes new material on GPS,
GNSSs including GPS, Glonass, Galileo, BeiDou, QZSS, and IRNSS/NAViC,
and MATLAB programs on square root information filtering (SRIF)
This book provides readers with solutions to real-world problems associated with global navigation satellite systems, inertial navigation, and integration. It presents readers with numerous detailed examples and practice problems, including GNSS-aided INS, modeling of gyros and accelerometers, and SBAS and GBAS. This revised fourth edition adds new material on GPS III and RAIM. It also provides updated information on low cost sensors such as MEMS, as well as GLONASS, Galileo, BeiDou, QZSS, and IRNSS/NAViC, and QZSS. Revisions also include added material on the more numerically stable square-root information filter (SRIF) with MATLAB programs and examples from GNSS system state filters such as ensemble time filter with square-root covariance filter (SRCF) of Bierman and Thornton and SigmaRho filter.
Global Navigation Satellite Systems, Inertial Navigation, and Integration, 4th Edition Updates on the significant upgrades in existing GNSS systems, and on other systems currently under advanced development Expanded coverage of basic principles of antenna design, and practical antenna design solutions More information on basic principles of receiver design, and an update of the foundations for code and carrier acquisition and tracking within a GNSS receiver Examples demonstrating independence of Kalman filtering from probability density functions of error sources beyond their means and covariances New coverage of inertial navigation to cover recent technology developments and the mathematical models and methods used in its implementation Wider coverage of GNSS/INS integration, including derivation of a unified GNSS/INS integration model, its MATLAB implementations, and performance evaluation under simulated dynamic conditions
is intended for people who need a working knowledge of Global Navigation Satellite Systems (GNSS), Inertial Navigation Systems (INS), and the Kalman filtering models and methods used in their integration.

Global Navigation Satellite Systems, Inertial Navigation, and Integration — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Global Navigation Satellite Systems, Inertial Navigation, and Integration», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.4.2 Implementation

The Kalman filter solves for the solution with the least mean‐squared error by using data‐weighting proportional to statistical information content (the inverse of uncertainty) in the measured data. It combines GNSS and INS information to the following:

1 Track drifting parameters of the sensors in the INS, so that INS performance does not degrade with time when GNSS is available.

2 Improve overall performance even when there are insufficient satellite signals for obtaining a complete GNSS solution.

3 Allow the INS to navigate with improved initial error whenever GNSS signals become unavailable.

4 Improve GNSS signal reacquisition when GNSS signals become available again by providing better navigation solutions (based on INS data).

5 Use acceleration and attitude rate information from the INS for reducing the signal phase‐tracking filter lags in the GNSS receiver, which can significantly improve GNSS reliability during periods of high maneuvering, jamming, or reduced signal availability.

The more intimate levels of GNSS/INS integration necessarily penetrate deeply into each of the subsystems, in that it makes use of partial results that are not ordinarily accessible to users. To take full advantage of the offered integration potential, we must delve into technical details of the designs of both types of systems.

Problems

1 1.1 How many satellites and orbit planes exist for GPS, GLONASS, and Galileo? What are the respective orbit plane inclinations?

2 1.2 List the differences in signal characteristics between GPS, GLONASS, and Galileo.

3 1.3 What are the reference points for GNSS and INS navigators? That is, when one of these produces a position estimate, what part of the respective system is that the position of?

4 1.4 Would an error‐free accelerometer attached to a GNSS satellite orbiting the Earth have any output? Why or why not?

5 1.5 Does the same fish, weighed on the same spring scale, appear to weigh more (as indicated by the stretching of the spring) at sea level on the equator or at the North Pole? Justify your answer.

References

1 1 Biezad, D.J. (1999). Integrated Navigation and Guidance Systems. New York: American Institute of Aeronautics and Astronautics.

2 2 Mackenzie, D. (2001). Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance. Cambridge, MA: MIT Press.

3 3 Guier, W.H. and Weiffenbach, G.C. (1997). Genesis of satellite navigation. Johns Hopkins APL Technical Digest 18 (2): 178–181.

4 4 Stansell, T. (1978). The Transit Navigation Satellite System: Status, Theory, Performance, Applications. Magnavox.

5 5 Global Positioning System (1999). Selected Papers on Satellite Based Augmentation Systems (SBASs) (“Redbook”), vol. VI. Alexandria, VA: ION.

6 6 Herring, T.A. (1996). The global positioning system. Scientific American 274 (2): 44–50.

7 7 Hofmann‐Wellenhof, B., Lichtenegger, H., and Collins, J. (1997). GPS: Theory and Practice. Vienna: Springer‐Verlag.

8 8 Institute of Navigation (1980). Monographs of the Global Positioning System: Papers Published in Navigation (“Redbook”), vol. I. Alexandria, VA: ION.

9 9 Institute of Navigation (1984). Monographs of the Global Positioning System: Papers Published in Navigation (“Redbook”), vol. II. Alexandria, VA: ION.

10 10 Institute of Navigation (1986). Monographs of the Global Positioning System: Papers Published in Navigation (“Redbook”), with Overview by R. Kalafus, vol. III. Alexandria, VA: ION.

11 11 Institute of Navigation (1993). Monographs of the Global Positioning System: Papers Published in Navigation (“Redbook”), with Overview by R. Hatch, vol. IV. Alexandria, VA: ION.

12 12 Institute of Navigation (1998). Monographs of the Global Positioning System: Papers Published in Navigation (“Redbook”), vol. V. Alexandria, VA: ION.

13 13 Logsdon, T. (1992). The NAVSTAR Global Positioning System. New York: Van Nostrand Reinhold.

14 14 Parkinson, B.W. and Spilker, J.J. Jr. (eds.) (1996). Global Positioning System: Theory and Applications, Progress in Astronautics and Aeronautics, vol. 1. Washington, DC: American Institute of Aeronautics and Astronautics.

15 15 Parkinson, B.W. and Spilker, J.J. Jr. (eds.) (1996). Global Positioning System: Theory and Applications, Progress in Astronautics and Aeronautics, vol. 2. Washington, DC: American Institute of Aeronautics and Astronautics.

16 16 Parkinson, B.W., O'Connor, M.L., and Fitzgibbon, K.T. (1995). Aircraft automatic approach and landing using GPS. In: Global Positioning System: Theory & Applications, Progress in Astronautics and Aeronautics, Chapter 14, vols. II and 164 (ed. B.W. Parkinson, J.J. Spilker Jr., and editor‐in‐chief P. Zarchan), 397–425. Washington, DC: American Institute of Aeronautics and Astronautics.

17 17 Rockwell International Corporation, Satellite Systems Division, Revision B (1991). GPS Interface Control Document ICD‐GPS‐200, July 3, 1991.

18 18 Mueller, F.K. (1985). A history of inertial navigation. Journal of the British Interplanetary Society 38: 180–192.

19 19 Kayton, M. and Fried, W.L. (1997). Avionics Navigation Systems, 2e. New York: Wiley.

20 20 Leick, A. (1995). GPS: Satellite Surveying, 2e, 534–537. New York: Wiley.

21 21 Janky, J.M. (1997). Clandestine location reporting by a missing vehicle. US Patent 5, 629, 693, 13 May 1997.

22 22 Draper, C.S. (1981). Origins of inertial navigation. AIAA Journal of Guidance and Control 4 (5): 449–456.

23 23 Gibson, J.N. (1996). The Navaho Missile Project: The Story of the “Know‐How” Missile of American Rocketry. Atglen, PA: Schiffer Military/Aviation History.

24 24 Hellman, H. (1962). The development of inertial navigation. NAVIGATION, Journal of the Institute of Navigation 9 (2): 82–94.

25 25 Wagner, J.F. (2005). From Bohnenberger's machine to integrated navigation systems, 200 years of inertial navigation. In: Photogrammetric Week 05 (ed. D. Fritsch), 123–134. Heidelberg: Wichmann Verlag.

26 26 Wrigley, W. (1977). History of inertial navigation. NAVIGATION, Journal of the Institute of Navigation 24: 1–6.

27 27 McMurran, M.W. (2008). Achieving Accuracy: A Legacy of Computers and Missiles. Bloomington, IN: Xlibris.

28 28 Slater, J.M. (1967). Newtonian Navigation, 2e. Anaheim, CA: Autonetics Division of Rockwell International.

29 29 Shubin, N. (2009). Your Inner Fish: A Journey into the 3.5‐Billion‐Year History of the Human Body. New York: Random House.

30 30 Levy, J.J. (1997). The Kalman filter: navigation's integration workhorse. GPS World (September 1997), pp. 65–71.

31 31 Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. ASME Transactions, Series D: Journal of Basic Engineering 82: 35–45.

Notes

1 1Source: Truant officer Agatha Morgan, played by Sara Haden in the 1936 film Captain January, starring Shirley Temple and produced by Daryl F. Zanuck for 20th Century Fox Studios.

2 2Newton called derivatives “fluxions” and integrals “fluents” and had his own unique notation. Modern notation used here has evolved from that of Gottfried Wilhelm Leibniz (1646–1716) and others.

3 3Named after Gaspard‐Gustave de Coriolis (1792–1843), who remodeled Newtonian mechanics in rotating coordinates.

4 4These terms are often used interchangeably, although an IMU usually refers to a functioning ISA capable of measuring rotation and acceleration in three dimensions, whereas an ISA may not necessarily contain a complete sensor suite.

5 5Named after Maximilian Schuler (1882–1972), a German engineer who discovered the phenomenon while analyzing the error characteristics of his cousin Hermann Anschütz‐Kaempfe's gyrocompass.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Global Navigation Satellite Systems, Inertial Navigation, and Integration»

Представляем Вашему вниманию похожие книги на «Global Navigation Satellite Systems, Inertial Navigation, and Integration» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Global Navigation Satellite Systems, Inertial Navigation, and Integration»

Обсуждение, отзывы о книге «Global Navigation Satellite Systems, Inertial Navigation, and Integration» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x