1 Cover
2 IEEE Press IEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board Ekram Hossain, Editor in Chief Jón Atli BenediktssonAnjan BoseDavid Alan GrierElya B. Joffe Xiaoou LiLian YongAndreas MolischSaeid Nahavandi Jeffrey ReedDiomidis SpinellisSarah SpurgeonAhmet Murat Tekalp
3 Title Page Substrate‐Integrated Millimeter‐Wave Antennas for Next‐Generation Communication and Radar Systems Edited by Zhi Ning Chen Xianming Qing The IEEE Press Series on Electromagnetic Wave Theory
4 Copyright
5 Editor Biographies
6 Contributors
7 Foreword
8 Preface
9 1 Introduction to Millimeter Wave Antennas 1.1 Millimeter Waves 1.2 Propagation of Millimeter Waves 1.3 Millimeter Wave Technology 1.4 Unique Challenges of Millimeter Wave Antennas 1.5 Briefing of State‐of‐the‐Art Millimeter Wave Antennas 1.6 Implementation Considerations of Millimeter Wave Antennas 1.7 Note on Losses in Microstrip‐Lines and Substrate Integrated Waveguides 1.8 Update of Millimeter Wave Technology in 5G NR and Beyond 1.9 Organization of the book 1.10 Summary References
10 2 Measurement Methods and Setups of Antennas at 60–325 GHz Bands 2.1 Introduction 2.2 State‐of‐the‐Art mmW Measurement Systems 2.3 Considerations for Measurement Setup Configuration 2.4 mmW Measurement Setup Examples 2.5 Summary References
11 3 Substrate Integrated mmW Antennas on LTCC 3.1 Introduction 3.2 High‐Gain mmW SIW Slot Antenna Arrays on LTCC 3.3 Summary References
12 4 Broadband Metamaterial‐Mushroom Antenna Array at 60 GHz Bands 4.1 Introduction 4.2 Broadband Low‐Profile CRLH‐Mushroom Antenna 4.3 Broadband LTCC Metamaterial‐Mushroom Antenna Array at 60 GHz 4.4 Summary References
13 5 Narrow‐Wall‐Fed Substrate Integrated Cavity Antenna at 60 GHz 5.1 Introduction 5.2 Broadband Techniques for Substrate Integrated Antennas 5.3 SIW Narrow Wall Fed SIC Antennas at Ka‐ and V‐Bands 5.4 Summary References
14 6 Cavity‐Backed SIW Slot Antennas at 60 GHz 6.1 Introduction 6.2 Operating Principle of the Cavity‐Backed Antenna 6.3 Cavity‐Backed SIW Slot Antenna 6.4 Types of SIW CBSAs 6.5 CBSA Design Examples at 60 GHz 6.6 Summary References
15 7 Circularly Polarized SIW Slot LTCC Antennas at 60 GHz 7.1 Introduction 7.2 Key Techniques of mmW CP Antenna Array 7.3 Wideband CP LTCC SIW Antenna Array at 60 GHz 7.4 Summary References
16 8 Gain Enhancement of LTCC Microstrip Patch Antenna by Suppressing Surface Waves 8.1 Introduction 8.2 State‐of‐the‐Art Methods for Suppressing Surface Waves in Microstrip Patch Antennas 8.3 Microstrip Patch Antennas with Partial Substrate Removal 8.4 Summary References
17 9 Substrate Integrated Antennas for Millimeter Wave Automotive Radars 9.1 Introduction 9.2 State‐of‐the‐Art Antennas for 24‐GHz and 77‐GHz Automotive Radars 9.3 Single‐Layer SIW Slot Antenna Array for 24‐GHz Automotive Radars 9.4 Transmit‐Array Antenna for 77‐GHz Automotive Radars 9.5 Summary Acknowledgments References
18 10 Sidelobe Reduction of Substrate Integrated Antenna Arrays at Ka‐Band 10.1 Introduction 10.2 Feeding Networks for Substrate Integrated Antenna Array 10.3 SIW Antenna Arrays with Sidelobe Reduction at Ka‐Band 10.4 Summary References
19 11 Substrate Edge Antennas 11.1 Introduction 11.2 State‐of‐the‐Art 11.3 Tapered Strips for Wideband Impedance Matching 11.4 Embedded Planar Lens for Gain Enhancement 11.5 Prism Lens for Broadband Fixed‐Beam Leaky‐Wave SEAs 11.6 Summary References
20 Index
21 End User License Agreement
1 Chapter 1 Table 1.1 Allocation of the radio frequency bands by ITU. Table 1.2 Dominant propagation modes and typical applications of electromagne... Table 1.3 Selected key milestones of research and development of mmW technolo... Table 1.4 mmW antennas. Table 1.5 mmW frequency ranges for 5G NR (TDD). Table 1.6 Comparison of features of network at 5G NR sub‐6 GHz and mmW bands.
2 Chapter 2 Table 2.1 Main features of the ETH‐MMW‐1000.Table 2.2 Main features of the μ‐Lab.Table 2.3 Main features of the mini‐compact range.
3 Chapter 3Table 3.1 Gain and efficiency of the 8 × 8 array.Table 3.2 Amplitudes of S‐parameters of a pair of SIWs at 140 and 270 GHz ban...Table 3.3 Dimensions of the FZP antenna (unit: mm).
4 Chapter 6Table 6.1 Geometrical parameters of the arrays.
5 Chapter 9Table 9.1 The classification of automotive radars based on range detection ca...Table 9.2 Frequency bands available for automotive radars over the world.Table 9.3 Dimensions of the slot array (unit: mm).
6 Chapter 11Table 11.1 Slots' positions and the antenna performance.Table 11.2 Achieved bandwidths of three impedance matching structures.Table 11.3 Comparison of the measured antenna gain.
1 Chapter 1 Figure 1.1 The average atmospheric absorption of waves at a sea level at the... Figure 1.2 (a) Aperture antennas and (b) microstrip antennas. Figure 1.3 Slot antennas. Figure 1.4 (a) Reflector antennas and (b) lens antennas. Figure 1.5 Simplified descriptions of PCB and LTCC processes. (a) PCB and (b... Figure 1.6 A bent MS transmission‐line on a LTCC board. Figure 1.7 The comparison of |S 11| and |S 21| of a bent MS transmission‐line ... Figure 1.8 The main losses at 60 GHz of a bent MS transmission‐line on a LTC... Figure 1.9 A 10‐mm long bent SIW in a LTCC board. Figure 1.10 The main losses at 60 GHz of a bent SIW in a LTCC board with var... Figure 1.11 Potential mmW applications in 5G NR and future networks.
2 Chapter 2 Figure 2.1 Free‐space range using an anechoic chamber. Figure 2.2 Compact antenna test range. Figure 2.3 Planar near‐field antenna measurement setup. (a) Block diagram an...Figure 2.4 ETH‐MMW‐1000 system (courtesy of Ethertronics Inc.).Figure 2.5 The μ‐Lab (courtesy of MVG).Figure 2.6 Mini‐compact range (courtesy of MVG).Figure 2.7 Gain measurement of two identical antennas on a probe station [28...Figure 2.8 Simplified manual on‐wafer antenna measurement setup [29–31].Figure 2.9 (a) Overview of the system configuration and (b) standard‐gain ho...Figure 2.10 Automatic on‐wafer mmW antenna measurement setup diagram [33].Figure 2.11 Nearly 3‐D radiation pattern measurement setups [34, 35].Figure 2.12 (a) A photo of the measurement setup and (b) a closer view of th...Figure 2.13 (a) Antenna measurement setup with backside probing technique an...Figure 2.14 NSI planar near‐field scanner model NSI‐905 V‐8x8 shown during t...Figure 2.15 NSI tiltable planar near‐field scanner model NSI‐906HT‐3 × 3 bui...Figure 2.16 Image of the volumetric mmW measurement facility [40].Figure 2.17 Robotic based near‐field antenna measurement setup [41].Figure 2.18 The layout of the mechanical positioning and measurement systems...Figure 2.19 Commercially available port extension modules.Figure 2.20 Interfaces for microwave antenna measurements. (a) Coax connecto...Figure 2.21 Interfaces for mmW antenna measurements up to 60 GHz. (a) End La...Figure 2.22 Interfaces for mmW antenna measurement above 75 GHz. (a) Wavegui...Figure 2.23 Examples of mmW antenna measurement setup with multiple reflecti...Figure 2.24 Schematic diagram of the measurement setup for antennas at a 60 ...Figure 2.25 Photos of the measurement setup for antennas at a 60 GHz‐band.Figure 2.26 Measured radiation patterns of an antipodal Fermi antenna at 60 ...Figure 2.28 Measured radiation patterns of a 60-GHz substrate‐integrated wav...Figure 2.29 Schematic diagram of the measurement setup for antennas at 140 G...Figure 2.30 Photos of the measurement setup for antennas at a 140 GHz band. ...Figure 2.31 Measured radiation pattern of 135-GHz antenna array on Benzocycl...Figure 2.32 Measured radiation patterns of a TE 20‐mode substrate integrated ...Figure 2.33 Schematic diagram of the measurement setup for antennas at 270 G...Figure 2.34 Photo of the measurement setup for antennas at a 270‐GHz band.Figure 2.35 Measured radiation patterns of a 270-GHz LTCC‐integrated strip‐l...
Читать дальше