33 33 Gatti, F., Bozzi, M., Perregrini, L. et al. (2006). A novel substrate integrated coaxial line (SICL) for wideband applications. In: Proceedings of the 36th European Microwave Conference, 1614–1617.
34 34 Shao, Y., Li, X.‐C., Wu, L.‐S., and Mao, J.‐F. (2017). A wideband millimeter‐wave substrate integrated coaxial line array for high‐speed data transmission. IEEE Trans. Microwave Theory Tech. 65 (8): 2789–2800.
35 35 Zhu, F., Hong, W., Chen, J.‐X., and Wu, K. (2012). Ultra‐wideband single and dual baluns based on substrate integrated coaxial line technology. IEEE Trans. Microwave Theory Tech. 60 (10): 3062–3070.
36 36 Yang, T.Y., Hong, W., and Zhang, Y. (2016). An SICL‐excited wideband circularly polarized cavity‐backed patch antenna for IEEE 802.11aj (45 GHz) applications. IEEE Antennas Wirel. Propag. Lett. 15: 1265–1268.
37 37 Liu, B., Xing, K.J., Wu, L. et al. (2017). A novel slot array antenna with substrate integrated coaxial line technique. IEEE Antennas Wirel. Propag. Lett. 16: 1743–1746.
38 38 Miao, Z.‐W. and Hao, Z.‐C. (2017). A wideband reflectarray antenna using substrate integrated coaxial true‐time delay lines for QLink‐pan applications. IEEE Antennas Wirel. Propag. Lett. 16: 2582–2585.
39 39 Xing, K., Liu, B., Guo, Z. et al. (2017). Backlobe and sidelobe suppression of a Q‐band patch antenna array by using substrate integrated coaxial line feeding technique. IEEE Antennas Wirel. Propag. Lett. 16: 3043–3046.
40 40 Liang, W. and Hong, W. (2012). Substrate integrated coaxial line 3 dB coupler. IET Electron. Lett. 48 (1): 35–36.
41 41 Chu, P. et al. (2014). Wide stopband bandpass filter implemented with spur stepped impedance resonator and substrate integrated coaxial line technology. IEEE Microwave Wirel. Compon. Lett. 24 (4): 218–220.
42 42 Zhang, J., Zhang, X., and Shen, D. (2016). Design of substrate integrated gap waveguide. IEEE MTT‐S Int. Microwave Symp. Dig.: 1–4.
43 43 Zhang, J., Zhang, X., Shen, D., and Kishk, A.A. (2017). Packaged microstrip line: a new quasi‐TEM line for microwave and millimeter‐wave applications. IEEE Trans. Microwave Theory Tech. 65 (3): 707–718.
44 44 Cao, B., Wang, H., Huang, Y., and Zheng, J. (2015). High‐gain L‐probe excited substrate integrated cavity antenna array with LTCC‐based gap waveguide feeding network for W‐band application. IEEE Trans. Antennas Propag. 63 (12): 5465–5474.
45 45 Cao, B., Wang, H., and Huang, Y. (2016). W‐band high‐gain TE220 ‐mode slot antenna array with gap waveguide feeding network. IEEE Antennas Wirel. Propag. Lett. 15: 988–991.
46 46 Dadgarpour, A., Sorkherizi, M.S., and Kishk, A.A. (2016). Wideband low‐loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding. IEEE Trans. Antennas Propag. 64 (12): 5094–5101.
47 47 Sorkherizi, M.S., Dadgarpour, A., and Kishk, A.A. (2017). Planar high‐efficiency antenna array using new printed ridge gap waveguide technology. IEEE Trans. Antennas Propag. 65 (7): 3772–3776.
48 48 Bayat‐Makou, N. and Kishk, A. (2017). Millimeter‐wave substrate integrated dual level gap waveguide horn antenna. IEEE Trans. Antennas Propag. 65 (12): 6847–6855.
49 49 Dadgarpour, A., Sorkherizi, M.S., Denidni, T.A., and Kishk, A.A. (2017). Passive beam switching and dual‐beam radiation slot antenna loaded with ENZ medium and excited through ridge gap waveguide at millimeter‐waves. IEEE Trans. Antennas Propag. 65 (1): 92–102.
50 50 Zhang, J., Zhang, X., and Kishk, A.A. (2018). Broadband 60 GHz antennas fed by substrate integrated gap waveguides. IEEE Trans. Antennas Propag. 66 (7): 3261–3270.
51 51 Shen, D., Ma, C., Ren, W. et al. (2018). A low‐profile substrate‐integrated‐gap‐waveguide‐fed magnetoelectric dipole. IEEE Antennas Wirel. Propag. Lett. 17: 1373–1376.
52 52 Yeap, S.B., Chen, Z.N., Li, R. et al. (2012). 135‐GHz co‐planar patch array on BCB/silicon with polymer‐filled cavity. Int. Workshop Antennas Tech.: 1–4.
53 53 3GPP TS 38.101–2 v15.2, online available: https://www.3gpp.org(accessed 19 December 2020).
54 54 Chen, Z.N., Chia, M.Y.W., Gong, Y. et al. (2011). Microwave, millimeter wave, and Terahertz technologies in Singapore. In: Proceedings of the 41st European Microwave Conference, 1–4.
55 55 Chen, Z.N. et al. (2012). Research and development of microwave & millimeter‐wave technology in Singapore. In: Proceedings of the 42nd European Microwave Conference, 1–4.
56 56 Li, T., Meng, H.F., and Dou, W.B. (2014). Design and implementation of dual‐frequency dual‐polarization slotted waveguide antenna array for Ka‐band application. IEEE Antennas Wirel. Propag. Lett. 13: 1317–1320.
57 57 Mao, C.‐X., Gao, S., Luo, Q. et al. (2017). Low‐cost X/Ku/Ka‐band dual‐polarized array with shared‐aperture. IEEE Trans. Antennas Propag. 65 (7): 3520–3527.
58 58 Wang, Z., Xiao, L., Fang, L., and Meng, H. (2014). A design of E/Ka dual‐band patch antenna with shared aperture. In: Proceedings of the Asia‐Pacific Microwave Conference, 333–335.
59 59 Han, C., Huang, J., and Chang, K. (2005). A high efficiency offset‐fed X/Ka‐dual‐band reflectarray using thin membranes. IEEE Trans. Antennas Propag. 53 (9): 2792–2798.
60 60 Hsu, S.‐H., Han, C., Huang, J., and Chang, K. (2007). An offset linear‐array‐fed Ku/Ka dual‐band reflectarray for planet cloud. IEEE Trans. Antennas Propag. 55 (11): 3114–3122.
61 61 Chaharmir, M. and Shaker, J. (2015). Design of a multilayer X‐/Ka‐band frequency‐selective surface‐backed reflectarray for satellite applications. IEEE Trans. Antennas Propag. 63 (4): 1255–1262.
62 62 Attia, H., Abdelghani, M.L., and Denidni, T.A. (2017). Wideband and high‐gain millimeter‐wave antenna based on FSS Fabry–Perot cavity. IEEE Trans. Antennas Propag. 65 (10): 5589–5594.
63 63 Li, T. and Chen, Z.N. (2020). Wideband Sidelobe‐level reduced Ka‐band Metasurface antenna Array fed by substrate integrated gap waveguide using characteristic mode analysis. IEEE Trans. Antennas Propag. 68 (3): 1356–1365.
64 64 Hong, W. et al. (2017). Multibeam antenna technologies for 5G wireless communications. IEEE Trans. Antennas Propag. 65 (12): 6231–6249.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.