Jamil Ghojel - Fundamentals of Heat Engines

Здесь есть возможность читать онлайн «Jamil Ghojel - Fundamentals of Heat Engines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Heat Engines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Heat Engines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry.
Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters
can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.

Fundamentals of Heat Engines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Heat Engines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Thermal efficiency of this heat engine is

(1.89) Since Eq 189 is obtained without reference to a specific working fluid it - фото 249

Since Eq. (1.89) is obtained without reference to a specific working fluid, it can be surmised that all reversible cycles operated between the same temperatures will have the same thermal efficiency.

Based on accumulated experimental knowledge, scientists and engineers have come to the conclusion that it is impractical to build the Carnot engine, and it remains to date as the ideal cycle against which real heat engine cycles are measured. If such an engine were to operate between combustion temperature of iso‐octane (gasoline) T H= 2300 K and the standard ambient temperature T L= 298.15 K , the Carnot efficiency would be 78%. By comparison, the most efficient reciprocating internal combustion engines can hardly achieve 50%.

1.3.8 Zeroth Law of Thermodynamics

If two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other and the three systems are said to be at the same temperature.

This law was added to the laws of thermodynamics early in the twentieth century because it was realised that the concept of equal‐in‐temperature is a prerequisite to a logical development of those laws. And to be logical, it was named the zeroth law of thermodynamics .

1.3.8.1 Thermodynamic Scale of Temperature

Temperature is a fundamental concept, not expressible in terms of other units or physical properties of the devices used to measure temperature, such as alcohol or mercury in glass thermometers or the electromotive force generated in a thermocouple. Physicists have established that temperature measures the kinetic energy of molecules, and the higher the molecular agitation, the higher the temperature and vice versa. The physicist William Thomson (Lord Kelvin) is credited with the establishment in 1848 of the absolute temperature scale (hence the symbol K for temperature) on the basis of Carnot's reversible cycle.

To show how it is possible to arrive at an absolute scale, a hypothetical experiment can be conducted to show that an absolute zero of temperature must exist, and then extend this line of reasoning to develop an ‘energy’ or ‘thermodynamic’ temperature scale.

It was shown earlier that the efficiency of the Carnot cycle is written as

This equation shows that T Lcan never be zero or less than zero for if T Lwere - фото 250

This equation shows that T Lcan never be zero or less than zero, for if T Lwere equal to zero, the thermal efficiency of the heat engine would be 1, or 100%, which would be a violation of the second law. Also, if T Lwere less than zero, the thermal efficiency would be greater than 100%, which would mean a reversal of the direction of Q L, and heat would be drawn from the low‐temperature source. This also would be a violation of the second law. So, theoretically, the absolute zero of temperature could never be reached.

If a Carnot engine is operated between a high‐temperature source at the temperature of boiling water T Hand a low‐temperature sink at the temperature of melting ice T L, and the amount of heat received Q steamand rejected Q icewere measurable accurately, the ratio Q steam/ Q icewould be equal to 1.3662. Since Q steam/ Q ice= T steam/ T ice,

(1.90) Fundamentals of Heat Engines - изображение 251

If the temperature range T steam− T iceis arbitrarily divided into 100 equal divisions (call it 100 ° C ), a second equation can be obtained

(1.91) Fundamentals of Heat Engines - изображение 252

The simultaneous solution of Eqs. (1.90) and (1.91) yields the temperature of boiling water and melting ice on a thermodynamic scale:

Fundamentals of Heat Engines - изображение 253

If the temperature range T steam− T iceis divided into 180 equal divisions (call it degrees Fahrenheit, F), we get

(1.92) Fundamentals of Heat Engines - изображение 254

The determination of a thermodynamic scale using reversible Carnot engine as - фото 255

The determination of a thermodynamic scale using reversible Carnot engine as described here is practically impossible. To determine where the number 1.3662 comes from, we start with the equation of state for a perfect gas at constant volume and constant pressure, which yields

(1.93) Next constantvolume and constantpressure thermometers are placed alternately - фото 256

Next, constant‐volume and constant‐pressure thermometers are placed alternately in boiling water and melting ice, and the volume and pressure ratios of the gases in the devices (carbon dioxide CO 2, hydrogen H 2, and helium He ) are measured at an initial pressure. If the procedure is repeated for different initial pressures and the results plotted versus pressure, straight lines are obtained, which converge at zero absolute pressure to a value of 1.3662, which must be the ratio of absolute temperature of boiling water and melting ice.

Currently, the international temperature scale (ITS‐90) is the standard used to represent the thermodynamic (absolute) temperature scale as closely as possible with improved accuracy over gas thermometry.

1.3.9 Third Law of Thermodynamics

This law, based on empirical evidence, postulates that absolute entropy of a pure crystalline substance in complete internal equilibrium is zero at temperature zero degree absolute. The third law allows the determination of absolute entropies from thermal data.

The entropy change of a gas on molar basis is

The entropy change for process 12 is then 194 If the specific heat C pis - фото 257

The entropy change for process 1–2 is then

(1.94) If the specific heat C pis assumed constant Eq 194 becomes 195 More - фото 258

If the specific heat C pis assumed constant, Eq. (1.94) becomes

(1.95) More accurate results can be obtained if the variability of specific heat with - фото 259

More accurate results can be obtained if the variability of specific heat with temperature is accounted for. Taking the absolute zero as the reference temperature, Fundamentals of Heat Engines - изображение 260can be defined as

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Heat Engines»

Представляем Вашему вниманию похожие книги на «Fundamentals of Heat Engines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Heat Engines»

Обсуждение, отзывы о книге «Fundamentals of Heat Engines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x