Jamil Ghojel - Fundamentals of Heat Engines

Здесь есть возможность читать онлайн «Jamil Ghojel - Fundamentals of Heat Engines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Heat Engines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Heat Engines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry.
Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters
can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.

Fundamentals of Heat Engines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Heat Engines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.59) Since specific enthalpy h u pv Eq 159 can be rewritten as 160 - фото 189

Since specific enthalpy h = u + pv , Eq. (1.59) can be rewritten as

(1.60) For a fluid flowing steadily at the rate of kgs the energy equation becomes - фото 190

For a fluid flowing steadily at the rate of kgs the energy equation becomes 161 where - фото 191 kg/s , the energy equation becomes

(1.61) Fundamentals of Heat Engines - изображение 192

where

Fundamentals of Heat Engines - изображение 193

All terms in Eq. (1.61) have units of power ( Fundamentals of Heat Engines - изображение 194).

For a control volume with multiple flows into and out of the system, the general steady‐flow energy equation can be written as

(1.62) 1353 Stagnation Properties Stagnation properties are those thermodynamic - фото 195

1.3.5.3 Stagnation Properties

Stagnation properties are those thermodynamic properties a flowing compressible fluid would possess if it were brought to rest adiabatically and reversibly, i.e. isentropically, and without heat and work transfer. The stagnation state is a convenient hypothetical state that simplifies many of the equations involving flow by taking account of the kinetic energy terms in the steady flow energy equation implicitly.

The stagnation enthalpy h tis the enthalpy that a gas stream of enthalpy h and velocity C would possess when brought to rest adiabatically and without work transfer. The energy equation thus becomes

Fundamentals of Heat Engines - изображение 196

(1.63) Fundamentals of Heat Engines - изображение 197

For a perfect gas, h = c p T and the corresponding stagnation temperature T tis

(1.64) Fundamentals of Heat Engines - изображение 198

Applying the concept of stagnation properties to an adiabatic compression, the energy Eq. (1.60) becomes

Rearranging we get 165 Temperaturemeasuring devices such as thermometers - фото 199

Rearranging, we get

(1.65) Temperaturemeasuring devices such as thermometers and thermocouples in reality - фото 200

Temperature‐measuring devices such as thermometers and thermocouples in reality measure the stagnation temperature of the flow and not the static temperature. Thus, introduction of stagnation temperatures simplifies solving the energy equation by eliminating the kinetic energy term and the need to measure flow velocity.

The stagnation pressure p tis defined as the pressure the gas stream would possess if the gas were brought to rest adiabatically and reversibly. Using Eqs. (1.48) and (1.64), p tcan be written as

(1.66) 1354 Isentropic Flow Examples include flow in ducts nozzles and diffusers - фото 201

1.3.5.4 Isentropic Flow

Examples include flow in ducts, nozzles, and diffusers without heat transfer and work being done. Knowing Fundamentals of Heat Engines - изображение 202, where a is the speed of sound and M ais the Mach number at the inlet, and rewriting Eq. (1.64) as

Fundamentals of Heat Engines - изображение 203

we obtain

Fundamentals of Heat Engines - изображение 204

Also,

Fundamentals of Heat Engines - изображение 205

Combining the last two equations, we get

(1.67) From Eqs 148 and 167 168 The pressure ratio for M a 1 at γ 14 - фото 206

From Eqs. (1.48) and (1.67)

(1.68) The pressure ratio for M a 1 at γ 14 is equal to 1893 This is the - фото 207

The pressure ratio for M a= 1 at γ = 1.4 is equal to 1.893. This is the critical pressure ratio for air. To achieve supersonic flow, the stagnation pressure needs to be such that p t> 1.893 p .

1.3.5.5 Speed Parameter

It was shown in Section 1.2that dimensional analysis and similitude can be used to derive functional representations of complex flow systems, such as compressors, using a reduced number of nondimensional groups of properties. Among the groups discussed were the velocity parameter Fundamentals of Heat Engines - изображение 208and mass flow parameter Fundamentals of Heat Engines - изображение 209( Eq. 1.39a). To find a physical interpretation of these seemingly arbitrary combinations of physical properties, consider first the ratio Combining this equation with Eq 167 we obtain 169 - фото 210:

Combining this equation with Eq 167 we obtain 169 Now for a given - фото 211

Combining this equation with Eq. (1.67) we obtain

(1.69) Now for a given compressor blade design and impeller tip speed U C f U - фото 212

Now, for a given compressor blade design and impeller tip speed U , C = f ( U ) and U = f ( ND ); hence, from Eq. (1.69) for the compressor inlet conditions

The compressor speed parameter is a function of the flow Mach number at the - фото 213

The compressor speed parameter is a function of the flow Mach number at the inlet (flight Mach number for a turbojet engine) and thermodynamic properties of the fluid. For a given gas with known thermodynamic properties and a compressor of fixed size,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Heat Engines»

Представляем Вашему вниманию похожие книги на «Fundamentals of Heat Engines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Heat Engines»

Обсуждение, отзывы о книге «Fundamentals of Heat Engines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x