Jamil Ghojel - Fundamentals of Heat Engines

Здесь есть возможность читать онлайн «Jamil Ghojel - Fundamentals of Heat Engines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Heat Engines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Heat Engines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry.
Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters
can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.

Fundamentals of Heat Engines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Heat Engines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.3.3.3 Isothermal Process

An isothermal process takes place at constant temperature, and the equation of state can be written as

(1.51) Fundamentals of Heat Engines - изображение 174

1.3.3.4 Isochoric Process

An isochoric process is a constant‐volume process for which the equation of state is reduced to

(1.52) Fundamentals of Heat Engines - изображение 175

1.3.3.5 Polytropic Process

A process is referred to as polytropic when it deviates from the adiabatic as a result of heat crossing the boundary in addition to work. The relationship is similar to the adiabatic with the adiabatic exponent γ replaced by a polytropic exponent n ( n < γ ):

(1.53) The volume V can also be written in terms of specific volumes v V m which - фото 176

The volume V can also be written in terms of specific volumes v = V / m , which yields the additional equation p 1/ p 2= ( v 2/ v 1) n.

1.3.4 Cycles

When a fluid undergoes a series of processes and then returns to its initial state, the fluid executes a thermodynamic cycle . A cycle that consists only of reversible processes is a reversible cycle.

To illustrate the application of some of the processes discussed earlier when calculating cycles, let us consider the theoretical thermodynamic cycle shown in Figure 1.8, which is known as the Diesel cycle in honour of the German inventor Rudolf Diesel.

Figure 18Application of process equations in theoretical cycles a Diesel - фото 177

Figure 1.8Application of process equations in theoretical cycles: (a) Diesel cycle; (b) calculation scheme for compression and expansion work.

The cycle has two heat‐only processes and two polytropic processes:

Process 2 − 3: Constant‐pressure heat addition Qin = mcp(T3 − T2).

Process 4 − 1: Constant‐volume heat rejection Qout = mcv(T4 − T1).

Process 1 − 2: Adiabatic compression PVγ = C (C is the constant in Eq. 1.48).

The magnitude of the compression work done on the gas can be determined as shown in Figure 1.8b:

Fundamentals of Heat Engines - изображение 178

where

p : average pressure for the shaded area

dV : volume increment

Since p = C / V γ,

Now C p 1 V 1 γ p 2 V 2 γ and hence 154 Since pV mRT the - фото 179

Now

C = p 1 V 1 γ= p 2 V 2 γ,

and hence,

(1.54) Since pV mRT the compression work can be rewritten as 155 Process 3 - фото 180

Since pV = mRT , the compression work can be rewritten as

(1.55) Process 3 4 Adiabatic expansion PV γ C The magnitude of the expansion - фото 181

Process 3 − 4: Adiabatic expansion PV γ= C . The magnitude of the expansion work done by the gas can be deduced in a similar way:

(1.56) or 157 If the sign convention given in Figure 19is used the compression - фото 182

or

(1.57) If the sign convention given in Figure 19is used the compression work is - фото 183

If the sign convention given in Figure 1.9is used, the compression work is negative work and the expansion work is positive work.

Figure 19Sign convention for heat and work 135 First Law of Thermodynamics - фото 184

Figure 1.9Sign convention for heat and work.

1.3.5 First Law of Thermodynamics

This law is a statement of the law of conservation of energy: when a system undergoes a thermodynamic cycle, the net heat exchange ∑ Q between the system and its surroundings plus the net work exchange ∑ W between the system and the surroundings is equal to zero. This implies that energy can neither be created nor destroyed in a system; it can only be converted from one form to another:

Fundamentals of Heat Engines - изображение 185

Considered here are applications of the first law in two engineering energy systems: non‐flow system and steady‐flow system.

1.3.5.1 Non‐Flow Energy Equation

For a closed system (no flow of fluid) that does not execute a cycle, the energy equation is

(1.58) where Q total heat transfer W total work transfer ΔU internal energy - фото 186

where

Q : total heat transfer

W : total work transfer

ΔU : internal energy change

The sign convention for work and heat is shown in Figure 1.9

1.3.5.2 Steady‐Flow Energy Equation

Consider 1 kg of a working fluid element that may be a liquid, gas, or vapour, or any combination, and which is flowing steadily through a control volume ( Figure 1.10). The fluid may possess energy in a number of forms between which conversions are possible:

1 Flow work or pressure work, given by pv.

2 Kinetic energy C2/2, due to the movement of the fluid element with velocity C.

3 Internal (thermal) energy u, due to the energy of the fluid molecules.

4 Potential or gravimetric energy, due to the height z above some datum line and given by zg.

5 Chemical, electrical, or magnetic energies may also be added, but these are not involved in the overwhelming cases encountered in thermal power cycles.

6 Heat Q may enter or leave the control volume.

7 Mechanical energy W may be added or removed, with some of the added energy being used to pump the fluid into the control volume or expel it out again.

8 Accumulated (stored) energy in the control volume as a whole ecv.

Figure 110Steadystate steadyflow control volume From the law of - фото 187

Figure 1.10Steady‐state, steady‐flow control volume.

From the law of conservation of energy, the net energy input should be equal to the net energy output plus the energy that accumulates in the control volume. For properties per unit mass (specific properties denoted by lowercase letters) and consistent energy units ( J ) for all terms, we can write

Energy is not usually allowed to accumulate in the control volume of practical - фото 188

Energy is not usually allowed to accumulate in the control volume of practical thermal power plants operating on thermodynamic cycles, and therefore the term e cvwill be henceforward ignored and the energy equation is reduced to

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Heat Engines»

Представляем Вашему вниманию похожие книги на «Fundamentals of Heat Engines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Heat Engines»

Обсуждение, отзывы о книге «Fundamentals of Heat Engines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x