Jamil Ghojel - Fundamentals of Heat Engines

Здесь есть возможность читать онлайн «Jamil Ghojel - Fundamentals of Heat Engines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Heat Engines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Heat Engines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry.
Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters
can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.

Fundamentals of Heat Engines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Heat Engines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.70) Fundamentals of Heat Engines - изображение 214

Hence, the nondimensional speed parameter is directly proportional to the Mach number.

1.3.5.6 Mass Flow Parameter

The mass flow rate and density of a fluid are and ρ p RT Combining these equations with the equation for the Mach - фото 215and ρ = p / RT . Combining these equations with the equation for the Mach number, we obtain

or rearranging 171 Now Also - фото 216

or, rearranging,

(1.71) Now Also hence - фото 217

Now

Also hence Combining this equation with Eqs 167 - фото 218

Also

hence Combining this equation with Eqs 167 168 and 171 we obtain - фото 219

hence

Combining this equation with Eqs 167 168 and 171 we obtain - фото 220

Combining this equation with Eqs. (1.67), (1.68), and (1.71) we obtain

Finally for the compressor inlet conditions 172 Rearranging Eq 172 - фото 221

Finally, for the compressor inlet conditions

(1.72) Rearranging Eq 172 yields 173 For a compressor of fixed size and - фото 222

Rearranging Eq. (1.72) yields

(1.73) Fundamentals of Heat Engines - изображение 223

For a compressor of fixed size and constant fluid properties, the flow parameter is a function of the Mach number:

(1.74) Fundamentals of Heat Engines - изображение 224

1.3.5.7 Applications of the Energy Equation

Simple nozzle or diffuser . A nozzle is a device that increases the velocity of a gas or vapour at the expense of pressure ( Figure 1.11a). A diffuser is a device that increases the pressure of a gas or vapour at the expense of velocity ( Figure 1.11b).

Figure 111Schematic diagrams of a a nozzle b diffuser Figure 112The - фото 225

Figure 1.11Schematic diagrams of a (a) nozzle; (b) diffuser.

Figure 112The reciprocating internal combustion engine as a steadyflow - фото 226

Figure 1.12The reciprocating internal combustion engine as a steady‐flow system.

There is no work or heat transfer and negligible potential energy change in both systems. If the input kinetic energy is of considerable value (the gas is approaching the nozzle in Figure 1.11a at a high velocity C 1), the energy equation for the nozzle is

(1.75) The kinetic energy of the fluid leaving the diffuser is usually ignored due to - фото 227

The kinetic energy of the fluid leaving the diffuser is usually ignored due to the low velocity at the exit, C 2( Figure 1.11b). The energy equation is then reduced to

(1.76) Fundamentals of Heat Engines - изображение 228

Reciprocating internal combustion engine . Figure 1.12shows a schematic diagram of the engine as a single steady‐flow system. Assuming negligible pressure work and potential and kinetic energies, energy Eq. (1.62) can be written as follows:

(1.77) is the total heat wasted as a result of heat transfer from the hot surfaces of - фото 229

картинка 230is the total heat wasted as a result of heat transfer from the hot surfaces of the engine to the surroundings.

The energy equation is often used for the combined combustion/expansion (power) stroke in reciprocating engines in order to assess the process of heat release by the burning fuel. As both inlet and exhaust valves are closed during this process, it is a non‐flow closed system with no added mechanical work. Applying the energy Eq. (1.58) written in terms of specific values, we obtain

(1.78) Fundamentals of Heat Engines - изображение 231

Both the volume and pressure change as the gases expand in the cylinder, producing work w = ∫ pdv . There is no work addition to the process, but there is a heat loss to the surroundings (unless it is assumed that the process is adiabatic); hence, the energy equation then becomes

(1.79) This simple and convenient form of the energy equation equates the energy input - фото 232

This simple and convenient form of the energy equation equates the energy input as heat from the combustion of the fuel to the sum of the change of internal energy of the gases as their temperature changes, work done by the gases as they expand in the cylinder during the power stroke, and the heat loss to the surroundings.

Gas turbine . The expansion process is steady‐state, steady‐flow with heat exchange with the surroundings and negligible potential and kinetic energy changes ( Figure 1.13).

Figure 113Schematic diagram of a turbine From Eq 161 180 - фото 233

Figure 1.13Schematic diagram of a turbine.

From Eq. (1.61)

(1.80) If the expansion process in the turbine is adiabatic the output power is - фото 234

Fundamentals of Heat Engines - изображение 235

If the expansion process in the turbine is adiabatic, the output power is simply

(1.81) Fundamentals of Heat Engines - изображение 236

Air compressor . The potential energy, input heat, inlet velocity, and output mechanical work can be ignored in the case of the compressor shown in Figure 1.14. Equation (1.61) is then reduced to

(1.82) Figure 114Schematic diagram of air compressor If th - фото 237

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Heat Engines»

Представляем Вашему вниманию похожие книги на «Fundamentals of Heat Engines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Heat Engines»

Обсуждение, отзывы о книге «Fundamentals of Heat Engines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x