Duixian Liu - Antenna-in-Package Technology and Applications

Здесь есть возможность читать онлайн «Duixian Liu - Antenna-in-Package Technology and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Antenna-in-Package Technology and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Antenna-in-Package Technology and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive guide to antenna design, manufacturing processes, antenna integration, and packaging Antenna-in-Package Technology and Applications • Includes a brief history of antenna-in-package technology • Describes package structures widely used in AiP, such as ball grid array (BGA) and quad flat no-leads (QFN) • Explores the concepts, materials and processes, designs, and verifications with special consideration for excellent electrical, mechanical, and thermal performance
Written for students in electrical engineering, professors, researchers, and RF engineers, 
 offers a guide to material selection for antennas and packages, antenna design with manufacturing processes and packaging constraints, antenna integration, and packaging.

Antenna-in-Package Technology and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Antenna-in-Package Technology and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

AiP technology balances performance, size, and cost, hence it has been widely adopted by chipmakers for 60‐GHz radios, augmented/virtual reality gadgets, and gesture radars. It has also found applications in 79‐GHz automotive radars, 94‐GHz phased arrays for imaging and data communications, 122‐GHz, 145‐GHz, and 160‐GHz sensors, as well as 300‐GHz wireless links. Recently, AiP technology has been under further development for millimeter‐wave (mmWave) fifth‐generation (5G) technology. Scalable large AiPs and multiple small AiPs have been successfully demonstrated in base stations, mobile phones, and networked cars at 28 GHz. We therefore believe that AiP technology will cause fundamental changes in the design of antennas for mobile communications for 5G and beyond operating in mmWave bands.

The development of mmWave AiP technology is particularly challenging because of the associated complexity in design, fabrication, integration, and testing. This book aims to face these challenges through disseminating relevant knowledge, addressing practical engineering issues, meeting immediate demands for existing systems, and providing the antenna and packaging solutions for the latest and emerging applications.

This book contains 11 chapters. The first five chapters lay some foundation and introduce fundamental knowledge. After the introductory chapter about how AiP technology has been developed as we know it today, several types of antennas are discussed in Chapter 2. An attempt is made to summarize the basic antennas and those antennas specifically developed for AiP technology. Emphasis is given to microstrip patch antennas and arrays, grid array antennas, Yagi–Uda antennas, and magneto‐electric dipole antennas because of their dominance in AiP technology. Performance improvement techniques of antennas for AiP technology are also described. Chapter 3describes today's mainstream packaging solutions with either wire‐bond or flip‐chip interconnects, wafer‐level package, and fan‐out wafer‐level package. Chapter 4focuses on the electrical, mechanical, and thermal co‐design for AiP modules. More importantly, the thermal management considerations for next‐generation heterogeneous integrated systems are reviewed in order to address the growing need for cooling the high‐power devices of future radio systems. Chapter 5presents the design and optimization of an anechoic test facility for testing mmWave integrated antennas. This facility can be used for both probe‐based and connector‐based measurements.

The next five chapters are related to the design, fabrication, and characterization of AiPs in different materials and processes for mmWave applications. Chapter 6discusses low‐temperature co‐fired ceramic (LTCC)‐based AiP. LTCC has unique properties for packaging mmWave circuits since it can provide a durable hermetic package with antennas, cavities, and integrated passive components. Chapter 7illustrates how industrial organic packaging substrate technology used for classical integrated circuit (IC) packaging can support the development of innovative, efficient, and cost‐effective mmWave AiPs from 60 GHz up to 300 GHz. Chapter 8focuses on embedded wafer‐level ball grid array (eWLB)‐based AiP. Unlike LTCC or high‐density integr (HDI), eWLB eliminates the need for a laminate substrate and replaces it with copper redistribution layers. Polymers are used for the electrical isolation between the metal layers. The metal routings are deposited by a combination of sputtering and electroplating with a thin film process. eWLB has historically been developed for mmWave automotive radar systems and therefore has naturally been used for mass production of mmWave AiPs. Chapter 9presents surface laminar circuit (SLC)‐based AiP. Compared to LTCC, HDI, and eWLB, SLC is more suitable for fabrication of very large or dense AiPs. The chapter describes SLC materials and design guidelines, and then addresses the design challenges and solutions for 8 × 8 dual‐polarized phased arrays at 94 GHz for imaging and 28 GHz for 5G base station applications, respectively. Chapter 10introduces different additive manufacturing technologies, methods to characterize three‐dimensional (3D)‐printed materials, a hybrid printing process by integrating 3D and inkjet printing, and a broadband 5G AiP realized with the hybrid process.

The last chapter turns to 3D AiP for power transfer, sensor nodes, and Internet of Things applications. This package has a cubic geometry with radiating antennas on its surrounding faces. The chapter highlights small antenna design and miniaturizing techniques as well as multi‐mode capability as a way to achieve wideband antennas.

This book is the result of the joint efforts of the 21 authors in eight different institutions in Asia, Europe, and the United States. A book on an emerging topic like AiP technology would not have been possible without such collaborations. We thank all authors for their creative contributions and careful preparation of manuscripts. We are also pleased to acknowledge the professional cooperation of the publishers.

Duixian Liu IBM Thomas J. Watson Research Center Yorktown Heights, NY, USA

Yueping Zhang School of Electrical and Electronic Engineering Nanyang Technological University Singapore

Abbreviations

2D two‐dimensional
3D three‐dimensional
3GPP 3rd Generation Partnership Project
5G fifth‐generation
ABS acrylonitrile butadiene styrene
ACE Advanced Semiconductor Engineering, Inc.
ACP aperture‐coupled patch
ADS Advanced Design System
AIA active integrated antenna
AiM antenna in a module
AiP antenna‐in‐package
AM additive manufacturing
AMC artificial magnetic conductor
AoB antenna on a board
AoC antenna on a chip
AR axial ratio
ARM advanced reduced‐instruction set‐computer machine
ASIC application‐specific integrated circuit
ASUT antenna system under test
AUT antenna under test
Az azimuth
BCB benzocyclobutene
BC‐SRR broadside‐coupled SRR
BER bit error rate
BERT BER tester
BiCMOS bipolar complementary metal oxide semiconductor
BGA ball grid array
BLE Bluetooth low energy
BT Bluetooth
BT bismaleimide triazine
BW bandwidth
C4 controlled collapse chip connection
CATR compact antenna test range
CCL copper‐clad laminate
CLIP continuous liquid interface printing
CMA characteristic mode analysis
CMF conjugate match factor
CMG conjugate match gain
CMOS complementary metal‐oxide semiconductor
CNC computer numerical controlled
CP circular polarization
CPS coplanar strip
CPU central processing unit
CPW coplanar waveguide
CT computer tomography
CTE coefficient of thermal expansion
CUF capillary underfill
DC direct current
DLP digital light projection
DMA dynamic mechanical analysis
DRAM dynamic random‐access memory
DRIE deep reactive ion etching
EBG electromagnetic bandgap
EIRP equivalent isotropic radiated power
El elevation
EM electromagnetic
EMI electromagnetic interference
ESD electrostatic discharge
ETS embedded traces
eWLB embedded wafer‐level ball grid array
EZL embedded Z line
FCC Federal Communications Commission
FDM fused‐deposition modeling
FE front end
FF far‐field
FMCW frequency modulated continuous wave
FoM figure of merit
FO PoP fan‐out package‐on‐package
FO‐WLP fan‐out wafer‐level packaging
FPGA field‐programmable gate array
FR4 flame resistant 4
FSS frequency selective surface
GaAs gallium arsenide
GaN gallium nitride
Gb/s gigabit per second
GPU graphics processing unit
GSG ground‐signal‐ground
GSGSG ground‐signal‐ground‐signal‐ground
GSM global system for mobile communications
HAST highly accelerated stress test
HBM high bandwidth memory
HDI high‐density integration
HDI high‐density interconnect
HFSS high‐frequency structure simulator
HPBW half‐power beam width
HTCC high‐temperature co‐fired ceramics
IC integrated circuit
IEEE Institute of Electrical and Electronics Engineers
IF intermediate frequency
InFO_PoP integrated fan out package on package
I/O input/output
IoT Internet of Things
ISM industrial, scientific and medical
ISSCC International Solid‐State Circuits Conference
JPL jet propulsion laboratory
LCD liquid crystal display
LCP liquid crystal polymer
LGA land grid array
LHCP left‐hand circular polarization
LNA low‐noise amplifier
LP linearly polarized
LTCC low‐temperature co‐fired ceramic
MACM multiple amplitude component method
MAPCM multiple amplitude phase component method
MCM multi‐chip module
MEMS micro‐electromechanical systems
MIM metal–insulator–metal
MIMO multiple input multiple output
MMIC monolithic microwave integrated circuit
MMWAC mmWave anechoic chamber
mmWave millimeter‐wave
mSAP modified semi‐additive process
MUF molded underfill
NF near‐field
NF noise figure
NIST National Institute of Standards and Technology
NRE non‐recurring engineering
NRW Nicholson–Ross–Weir
OTA over‐the‐air
PAE power‐added efficiency
PAM phase amplitude method
PBO polybenzoxazoles
PCB printed circuit board
PEC perfect electric conductor
PER packet error rate
PET polyethylene terephthalate
pHEMT pseudomorphic high electron mobility transistor
PI polyimide
PLA polylactic acid
PLL phase‐locked loop
PMC perfect magnetic conductor
PP polypropylene
PPM polarization pattern method
PTH plated‐through‐hole
p.u.l. per unit length
QFN quad flat non‐leaded
QFP quad flat package
R&D research and development
RAM random‐access memory
RCC resin‐coated copper
RCS radar cross‐section
RDL redistribution layer
RF radio frequency
RFIC radio frequency integrated circuit
RFID radio‐frequency identification
RHCP right‐hand circular polarization
RLCG resistance, inductance, capacitance, and conductance
RMS root mean square
RoHS Restriction of Hazardous Substances Directive
RSM rotating source method
RX receiver
SAM scanning acoustic microscopy
SAP semi‐additive process
SAR synthetic aperture radar
SEM scanning electron microscopy
SG signal‐ground
SiGe silicon germanium
SiP system‐in‐package
SISO single input, single output
SIW substrate integrated waveguide
SLA stereolithography
SLC surface laminar circuit
SLM selective laser melting
SLS selective laser sintering
SMA sub‐miniature version A
SNR signal‐to‐noise ratio
SoC system on chip
SoP system‐on‐package
SPDR split post dielectric resonator
SPP surface plasmon polariton
SRR split‐ring resonator
SSD solid state drive
SSMA small SMA
SUB subtractive process
TCB thermocompression bonding
TE transverse electric
TEM transverse electro‐magnetic
TEV through encapsulant via
TFMSL thin‐film microstrip line
TIM thermal interface material
TIV through InFO via
TL transmission line
TMA thermomechanical analyzer
TM transverse magnetic
TMV through‐mold vias
TPP two‐photo polymerization
TSMC Taiwan Semiconductor Manufacturing Company
TSOP thin small outline package
TSV through silicon via
TX transmitter
μvia microvia
UBM under bump metallurgy
UHF ultra‐high frequency
UV ultraviolet
UWB ultra‐wideband
VCO voltage‐controlled oscillator
VGA variable gain amplifier
VLSI very‐large‐scale integration
VNA vector network analyzer
VQFN very thin quad flat no‐lead
VSWR voltage standing wave ratio
WGP wave‐guide port
WiGig wireless gigabit alliance
WLCSP wafer level chip scale package
WLP wafer level package
WPAN wireless personal area network
WPT wireless power transfer
WSN wireless sensor network

Symbols

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Antenna-in-Package Technology and Applications»

Представляем Вашему вниманию похожие книги на «Antenna-in-Package Technology and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Antenna-in-Package Technology and Applications»

Обсуждение, отзывы о книге «Antenna-in-Package Technology and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x