Donald W. McRobbie - Essentials of MRI Safety

Здесь есть возможность читать онлайн «Donald W. McRobbie - Essentials of MRI Safety» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Essentials of MRI Safety: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Essentials of MRI Safety»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Essentials of MRI Safety Complex equations and models are stripped back to present the foundations of theory and physics necessary to understand each topic, from the basic laws of magnetism to fringe field spatial gradient maps of common MRI scanners. Written by an internationally recognised MRI author, educator, and MRI safety expert, this important textbook:
Reflects the most current research, guidelines, and MRI safety information Explains procedures for scanning pregnant women, managing MRI noise exposure, and handling emergency situations Prepares candidates for the American Board of MR Safety exam and other professional certifications Aligns with MRI safety roles such as MR Medical Director (MRMD), MR Safety Officer (MRSO) and MR Safety Expert (MRSE) Contains numerous illustrations, figures, self-assessment tests, key references, and extensive appendices
is an indispensable text for all radiographers and radiologists, as well as physicists, engineers, and researchers with an interest in MRI.

Essentials of MRI Safety — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Essentials of MRI Safety», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 210 Domains in a ferromagnetic material as the external field is - фото 64

Figure 2.10 Domains in a ferromagnetic material as the external field is increased from zero to the saturation point.

The B‐field in the material increases in the presence of an external field H (or B). The slope of the curve gives the magnetic permeability μ, its value depending upon the strength of H applied. For low values of external field, the magnetization is reversible. Above the saturation point the material becomes unable to sustain a higher magnetization no matter how large the applied field is. This material is magnetically saturated . For most ferromagnetic materials this occurs below 1.5 T, so it is likely that a potential projectile will be saturated when very close to the magnet bore entrance. Figure 2.11shows the B‐H curve for series 416 stainless steel, a material commonly used in domestic goods. Also shown is the dependence of its magnetic permeability μ upon the external field H.

Figure 211 BH curve for 416 stainless steel blue line and its magnetic - фото 65

Figure 2.11 B‐H curve for 416 stainless steel (blue line) and its magnetic permeability μ (red line). μ is a function of H. The metal saturates at 1.85 T. The external field H = B 0/μ 0.

As the applied H‐field is reduced (or the material is removed from the external B 0‐field of your magnet) the internal B within the material decreases. Due to hysteresis , it does not decrease exactly along the path of its increase ( Figure 2.12). With a hard ferromagnetic material significant B remains once the external field has been reduced to zero. This is known as the remanence , B rem. Permanent magnets have high remanence. If the H is applied in the opposite direction (i.e. is made negative) the material’s B continues to fall. The intercept H con the ‐H axis is called the coercivity . Soft materials have low coercivity and remanence with a slim B‐H (or M‐H) curve. In hard ferromagnetic materials both are large and the hysteresis curve is broader. Above the Curie temperature , metals lose their ferromagnetic properties. Values of B sat, H cand Curie temperatures are shown in Table 2.2.

Figure 212 The hysteresis curve for a ferromagnetic material The orange line - фото 66

Figure 2.12 The hysteresis curve for a ferromagnetic material. The orange line represents increases in field which are reversible. Soft ferromagnetic materials have a slim curve with low remanence and coercivity. Hard ferromagnetic materials have a broader curve with higher remanence and coercivity.

Table 2.2 Properties of ferromagnetic metals.

Soft Ferromagnetic H C(A M −1) B sat(T) Curie temperature (K)
Silicon steel 40–70 2.0 750
Mumetal (Ni-Fe alloy) 0.6–1.0 0.77 350
Iron 12–400 1.7–2.2 770
Nickel 400 0.62 358
400 series stainless steels 130–480 1.2–1.4
Hard Ferromagnetic
5% Chromium steel 5×10 3 0.94 760–850
Alnico (Al-Ni-Co alloy) 50×10 3 0.56–1.35 973–1133
Supermagloy (Sm-Co alloy) 700×10 3 1.50 993–1073

Demagnetizing field and factors

An object’s shape adds a further layer of complexity with great significance for magnetic forces and torques, and hence for MRI safety. Figure 2.13shows how magnetization of the object in an external B 0generates “virtual poles”, resulting in a “de‐magnetization field” which reduces the apparent value of susceptibility χ app:

(2.8) Essentials of MRI Safety - изображение 67

Figure 213 Demagnetization field within objects magnetized by an external - фото 68

Figure 2.13 Demagnetization field within objects magnetized by an external magnetic field: the flatter object (left) creates more ‘virtual poles’ and develops a greater degree of demagnetization.

where d iis the demagnetizing factor . For simple shapes (ellipsoids of rotation, cuboids and cylinders) there are three demagnetizing factors: d 1along the principal axis, d 2and d 3along the minor axes. Representative values are shown in Table A1.1 in Appendix 1. Figure 2.14shows the values of 1/d 1for the axial and 1/d 2(=1/d 3) for the radial axes of cylindrical objects. It is the demagnetizing factor that determines the level of magnetization of a ferromagnetic object, rather than the value of χ. For an unsaturated sphere the internal B field is three times the external B 0. For elongated objects the internal B can be significantly greater. As a simple rule of thumb, for a cylinder whose length is aligned with B 0

(2.9a) Essentials of MRI Safety - изображение 69

Figure 214 Reciprocal demagnetization factors for a cylinder 1d 1axial red - фото 70

Figure 2.14 Reciprocal demagnetization factors for a cylinder: 1/d 1(axial, red line), 1/d 2(radial, blue line). For a cylinder d 3= d 2.

If the object is rotated 90° to B 0

(2.9b) Essentials of MRI Safety - изображение 71

Figure 2.15shows the theoretical internal B for ferromagnetic cylindrical objects of various length‐diameter (l/d) ratios and a sphere as they approach 1.5 and 3 T shielded magnets. In each case the saturation value B sat(=1.6 T) is reached at greater distances from the magnet for the more elongated objects.

Figure 215 Predicted internal B for a ferromagnetic sphere and cylinders of - фото 72

Figure 2.15 Predicted internal B for a ferromagnetic sphere and cylinders of differing length/diameter ratios in the approach to 1.5 and 3 T MRI magnets. The material saturates at 1.6 T. The bore entrance is at 0.8 m. The dotted gray line indicates the B 0field strength.

Demagnetizing factors and B satare crucial for determining the force and torque on different shaped objects within the scanner’s fringe field.

MYTHBUSTER:

The internal magnetic field or degree of magnetization of a ferromagnetic object is not determined by its magnetic susceptibility but by its demagnetization factors and saturation status.

Example 2.1 Magnetization of a nickel coin

A nickel coin (length = 1 mm, diameter = 1 cm) is inadvertently brought into the MRI examination room. If the external field is 100 mT what is the field within the coin if it is: (a) lying face on to the magnet; (b) edge on to the magnet? Will the coin’s metal saturate?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Essentials of MRI Safety»

Представляем Вашему вниманию похожие книги на «Essentials of MRI Safety» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Essentials of MRI Safety»

Обсуждение, отзывы о книге «Essentials of MRI Safety» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x