George Acquaah - Principles of Plant Genetics and Breeding

Здесь есть возможность читать онлайн «George Acquaah - Principles of Plant Genetics and Breeding» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Principles of Plant Genetics and Breeding: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Principles of Plant Genetics and Breeding»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition:
Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources 
offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.

Principles of Plant Genetics and Breeding — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Principles of Plant Genetics and Breeding», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

4.5 Predicting breeding value

Breeding value(or genetic merit) of an individual as a genetic parent is the sum of gene effects of the individual as measured by the performance of its progeny. Statistically, it is measured as twice the deviation of the offspring from the population mean (since the individual only contributes half of the alleles to its offspring). This estimate measures the ability of an individual to produce superior offspring. This is the part of an individual's genotypic value that is due to independent gene effects and hence can be transmitted. The mean breeding value becomes zero with random mating. This estimate is of importance to breeders because it assists them in selecting the best parents to use in their programs.

The Best Linear Unbiased Prediction (BLUP )is a common statistical method for estimating breeding values. It is unbiased because as more data are accumulated, the predicted breeding values approach the true values. BLUP is a method of estimating random effects. The context of this statistical method is the linear model

Principles of Plant Genetics and Breeding - изображение 83

where y = is a vector of n observable random variables; B is vector of p unknown parameters with fixed value or effects; X and Z are known matrices; u and e are vectors of q and n , respectively, unobservable random variables (random effects).

To apply this technique, numerical scores are assigned to traits and compiled as predictions of the future. Simple traits can be most accurately and objectively measured and possibly predicted. Only one trait may be predicted in a model. This trait has to be objectively measurable with high accuracy. Further, it has to be heritable.

4.6 Genomic selection (genome‐wide selection)

Genomic selection and its application in plant breeding is the subject of Chapter 25. Selection in conventional plant breeding generally relies on breeding values estimated from pedigree‐based mixed models that cannot account for Mendelian segregation, and in the absence of inbreeding, can only explain one half of the genetic variability (individual contributes only half of its alleles to the next generation as previously stated). Molecular markers have the capacity to track mendelian segregation as several positions of the genome of the organism, thereby increasing the accuracy of estimates of genetic values (and the genetic progress achievable when the predictions are used for selection in breeding). Even though marker‐assisted selection (MAS) (see Chapter 24) has achieved some success, its application to improving quantitative traits is hampered by various factors. The biparental mating designs used for detection of loci affecting quantitative traits and statistical methods used are not well‐suited to traits that are under polygenic control (MAS uses molecular markers in linkage disequilibrium with QTL).

Genomic selection (or genome‐wide selection) is proposed as a more effective approach to improving quantitative traits. It uses all the available molecular markers across the entire genome (there are thousands of genome‐wide molecular markers) to estimate genetic or breeding values. Using high‐density marker scores in the prediction model and high throughput genotyping, genomic selection avoids biased marker effect estimates and captures more of the variation due to the small‐effect QTL. Genomic selection has advantages. It can accelerate the selection cycles and increase the selection gains per unit time.

4.7 Mapping quantitative traits

The subject of mapping is treated in detail in Chapter 22. Quantitative traits pose peculiar challenges to plant breeders compared to qualitative traits. They are difficult to map and breed. Over the years, researchers have developed new methodologies to address these challenges, thereby enabling breeders to achieve genetic gain more rapidly in their endeavors.

Key references and suggested reading

1 Ali, A. and Johnson, D.L. (2000). Heritability estimates for winter hardiness in lentil under natural and controlled conditions. Plant Breeding 119: 283–285.

2 Bernardo, R. (2002). Breeding for Quantitative Traits in Plants, 369. Stemma Press.

3 Bernardo, R. and Yu, J. (2007). Prospects for genome‐wide selection for quantitative traits in maize. Crop Science 47: 1082–1090.

4 Bhatnagar, S., Betran, F.J., and Rooney, L.W. (2004). Combining abilities of quality protein maize inbreds. Crop Science 44: 1997–2005.

5 Bohren, B.B., McKean, H.E., and Yamada, Y. (1961). Relative efficiencies of heritability estimates based on regression of offspring on parent. Biometrics 17: 481–491.

6 Cockerham, R.E., Robinson, H.F., and Harvey, P.H. (1949). A breeding procedure designed to make maximum use of both general and specific combining ability. Journal of American Society of Agronomy 41: 360–367.

7 Crossa, J., Perez, P., de los Campos, G. et al. (2010). Genomic selection and prediction in plant breeding. In: Quantitative Genetics, Genomics, and Plant Breeding, 2e (ed. M.S. Kang), 269–288.

8 Edwards, J.W. and Lamkey, K.R. (2002). Quantitative genetics of inbreeding in a synthetic maize population. Crop Science 42: 1094–1104.

9 Falconer, D.S. (1981). Introduction to Quantitative Genetics. New York: Longman Group, Ltd.

10 Falconer, D.S. and Mackay, T.F.C. (1996). Introduction to Quantitative Genetic, 4e. Harlow, UK: William Longman.

11 Gallais, A. (2003). Quantitative Genetics and Breeding Methods in Autopolyploid Plants. Paris: INRA 513p.

12 Gardner, C.O. (1977). Quantitative genetic studies and population improvement in maize and sorghum. In: Proc. Int. Conf. Quantitative Genetics (eds. E. Pollak, O. Kempthorne and T.B. Bailey), 475–489. Ames, Iowa: Iowa State University.

13 Glover, M.A., Willmot, D.B., Darrah, L.L. et al. (2005). Diallele analysis of agronomic traits using Chinese and US maize germplasm. Crop Science 45: 1096–1102.

14 Griffing, B. (1956). A generalized treatment of the use of diallele crosses in quantitative inheritance. Heredity 10: 31–50.

15 Griffing, B. (1956b). Concept of general and specific combining ability in relation to a diallele crossing system. Australian Journal of Biological Sciences 9: 463–493.

16 Heffner, E.L., Sorrells, M.E., and Jannink, J. (2009). Genomic selection for crop improvement. Crop Science 49 (1): 12.

17 Henderson, C.R. (1963). Selection index and expected genetic advance. In: Statistical Genetics and Plant Breeding (eds. W.D. Hanson and H.F. Robinson). Washington, D.C.: Nat. Acad. Sci. Nat. Res. Council Publ. No. 982.

18 Hill, W.G. (2010). Understanding and using quantitative genetic variation. Philosophical Transactions of The Royal Society B Biological Sciences 365 (1537): 73–85.

19 Hill, J., Becker, H.C., and Tigerstedt, P.M.A. (1998). Quantitative and Ecological Aspects of Plant Breeding. London: Chapman and Hall.

20 Holland, J.B. (2001). Epistasis and plant breeding. In: Plant Breeding Reviews, vol. 21 (ed. J. Janick), 27–92. Wiley.

21 Lin, C.Y. (1978). Index selection for genetic improvement of quantitative characters. Theoretical and Applied Genetics 52: 49–56.

22 Mackay, T.F.C., Stone, E.A., and Ayroles, J.F. (2009). The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics 10: 565–577.

23 Meuwissen, T.H.E., Hayes, B.J., and Goddard, M.E. (2001). Prediction of total genetic value using genome‐wide dense markermaps. Genetics 157: 1819–1829.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Principles of Plant Genetics and Breeding»

Представляем Вашему вниманию похожие книги на «Principles of Plant Genetics and Breeding» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Principles of Plant Genetics and Breeding»

Обсуждение, отзывы о книге «Principles of Plant Genetics and Breeding» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x