Process Intensification and Integration for Sustainable Design

Здесь есть возможность читать онлайн «Process Intensification and Integration for Sustainable Design» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Process Intensification and Integration for Sustainable Design: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Process Intensification and Integration for Sustainable Design»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry  Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. 
Process Intensification and Integration for Sustainable Design
 
Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants 
 is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.

Process Intensification and Integration for Sustainable Design — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Process Intensification and Integration for Sustainable Design», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

References

1 1 Wang, Q., Chen, X., Jha, A.N., and Rogers, H. (2014). Natural gas from shale formation – the evolution, evidences and challenges of shale gas revolution in United States. Renewable and Sustainable Energy Reviews 30: 1–28. https://doi.org/10.1016/j.rser.2013.08.065.

2 2 EPA (2018). The Process of Unconventional Natural Gas Production. U.S. Environmental Protection Agency. https://www.epa.gov/uog/process-unconventional-natural-gas-production(accessed 7 March 2019).

3 3 Gao, J. and You, F. (2017). Design and optimization of shale gas energy systems: overview, research challenges, and future directions. Computers and Chemical Engineering 106: 699–718. https://doi.org/10.1016/j.compchemeng.2017.01.032.

4 4 EIA (2018). Where Our Natural Gas Comes From. U.S. Energy Information Administration. https://www.eia.gov/energyexplained/index.php?page=natural_gas_where(accessed 4 March 2019).

5 5 Al‐Douri, A., Sengupta, D., and El‐Halwagi, M.M. (2017). Shale gas monetization – a review of downstream processing to chemical fuels. Journal of Natural Gas Science and Engineering 45: 436–455. https://doi.org/10.1016/j.jngse.2017.05.016.

6 6 Hu, D. and Xu, S. (2013). Opportunity, challenges and policy choices for China on the development of shale gas. Energy Policy 60: 21–26. https://doi.org/10.1016/j.enpol.2013.04.068.

7 7 Lozano Maya, J.R. (2013). The United States experience as a reference of success for shale gas development: the case of Mexico. Energy Policy 62: 70–78. https://doi.org/10.1016/j.enpol.2013.07.088.

8 8 OGJ‐editors (2019). WoodMac Lowers China Gas Production Forecast. Oil and Gas Journal. https://www.ogj.com/drilling-production/article/14038976/woodmac-lowers-china-gas-production-forecast(accessed 18 September 2019).

9 9 EIA (2019a). Growth in Argentina's Vaca Muerta Shale and Tight Gas Production Leads to LNG Exports. U.S. Energy Information Administration. https://www.eia.gov/todayinenergy/detail.php?id=40093(accessed 17 September 2019).

10 10 EIA (2019b). Background Reference: Algeria. U.S. Energy Information Administration. https://www.eia.gov/beta/international/analysis_includes/countries_long/Algeria/background.htm(accessed 18 September 2019).

11 11 National Energy Board (2018). Canada's Energy Future 2018 Supplement: Natural Gas Production. National Energy Board. https://www.cer-rec.gc.ca/nrg/ntgrtd/ftr/2018ntrlgs/nrgftrs2018spplmntsntrlgs-eng.pdf(accessed 18 September 2019).

12 12 Duhalt, A., Mikulska, A., and Maher, M.D. (2019). A Proposed Shale Ban in Mexico. Baker Institute Issue Brief No. 05.03.19. Houston, TX: Rice University's Baker Institute for Public Policy.

13 13 EIA (2015). World Shale Resource Assessments. U.S. Energy Information Administration. https://www.eia.gov/analysis/studies/worldshalegas(accessed 17 September 2019).

14 14 Bullin, K.A. and Krouskop, P.E. (2009). Compositional variety complicates processing plans for US shale gas. Oil and Gas Journal 107: 50–55.

15 15 EIA (2019c). Henry Hub Natural Gas Spot Prices. U.S. Energy Information Administration. https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm(accessed 7 March 2019).

16 16 Business Insider. (2019). Natural gas (Henry hub) prices. https://markets.businessinsider.com/commodities/natural-gas-price(accessed 17 September 2019).

17 17 Reuters. (2019). Texas Waha natural gas prices. https://www.reuters.com/article/us-usa-texas-permian-prices/texas-waha-natgas-prices-rise-ahead-of-gulf-coast-pipeline-start-up-idUSKCN1VR27U(accessed 17 September 2019).

18 18 EIA (2019d). Annual Energy Outlook 2019. U.S. Energy Information Administration. https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf(accessed 7 March 2019).

19 19 He, C. and You, F. (2014). Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno‐economic analysis. Industrial and Engineering Chemical Research 53: 11442–11459. https://doi.org/10.1021/ie5012245.

20 20 Noureldin, M.M.B., Elbashir, N.O., and El‐Halwagi, M.M. (2014). Optimization and selection of reforming approaches for syngas generation from natural/shale gas. Industrial and Engineering Chemistry Research 53: 1841–1855. https://doi.org/10.1021/ie402382w.

21 21 Martínez, D.Y., Jiménez‐Gutiérrez, A., Linke, P. et al. (2014). Water and energy issues in gas‐to‐liquid processes: assessment and integration of different gas‐reforming alternatives. ACS Sustainable Chemistry & Engineering 2: 216–225. https://doi.org/10.1021/sc4002643.

22 22 Gabriel, K.J., Linke, P., Jiménez‐Gutiérrez, A. et al. (2014). Targeting of the water‐energy nexus in gas‐to‐liquid processes: a comparison of syngas technologies. Industrial and Engineering Chemical Research 53: 7087–7102. https://doi.org/10.1021/ie4042998.

23 23 Julián‐Durán, L.M., Ortiz‐Espinoza, A.P., El‐Halwagi, M.M., and Jiménez‐Gutiérrez, A. (2014). Techno‐economic assessment and environmental impact of shale gas alternatives to methanol. ACS Sustainable Chemistry & Engineering. 2: 2338–2344. https://doi.org/10.1021/sc500330g.

24 24 Ortiz‐Espinoza, A.P., Jiménez‐Gutiérrez, A., and El‐Halwagi, M.M. (2017). Including inherent safety in the design of chemical processes. Industrial and Engineering Chemistry Research 56: 14507–14517. https://doi.org/10.1021/acs.iecr.7b02164.

25 25 Yang, M. and You, F. (2017). Comparative techno‐economic and environmental analysis of ethylene and propylene manufacture from wet shale gas and naphta. Industrial & Engineering Chemistry Research 56: 4038–4051. https://doi.org/10.1021/acs.iecr.7b00354.

26 26 Ortiz‐Espinoza, A.P., Noureldin, M.M.B., Jiménez‐Gutiérrez, A., and El‐Halwagi, M.M. (2017). Design, simulation and techno‐economic analysis of two processes for the conversion of shale gas to ethylene. Computers and Chemical Engineering 107: 237–246. https://doi.org/10.1016/j.compchemeng.2017.05.023.

27 27 Thiruvenkataswamy, P., Eljack, F.T., Roy, N. et al. (2016). Safety and techno‐economic analysis of ethylene technologies. Journal of Loss Prevention in the Process Industries 39: 74–84. https://doi.org/10.1016/j.jlp.2015.11.019.

28 28 Peplow, M. (2017). How fracking is upending the chemical industry. Nature 550 (7674): 26–28. https://www.nature.com/news/how-fracking-is-upending-the-chemical-industry-1.22753.

29 29 Salerno, D., Arellano‐García, H., and Wozny, G. (2011). Ethylene separation by feed‐splitting from light gases. Energy 36: 4518–4523. https://doi.org/10.1016/j.energy.2011.03.064.

30 30 Stünkel, S., Illmer, D., Drescher, A. et al. (2012). On the design, development and operation of an energy efficient CO2 removal for the oxidative coupling of methane in a miniplant scale. Applied Thermal Engineering 43: 141–147. https://doi.org/10.1016/j.applthermaleng.2011.10.035.

31 31 Pérez‐Uresti, S.I., Adrián‐Mendiola, J.M., El‐Halwagi, M.M., and Jiménez‐Gutiérrez, A. (2017). Techno‐economic assessment of benzene production from shale gas. Processes 5: 1–10. https://doi.org/10.3390/pr5030033.

32 32 Agarwal, A., Sengupta, D., and El‐Halwagi, M. (2018). Sustainable process design approach for on‐purpose propylene production and intensification. ACS Sustainable Chemistry & Engineering 6: 2407–2421. https://doi.org/10.1021/acssuschemeng.7b03854.

33 33 Jasper, S. and El‐Halwagi, M.M. (2015). A techno‐economic comparison between two methanol‐to‐propylene processes. Processes 3: 684–698. https://doi.org/10.3390/pr3030684.

34 34 Babi, D.K., Holtbruegge, J., Lutze, P. et al. (2015). Sustainable process synthesis‐intensification. Computers and Chemical Engineering 81: 218–244. https://doi.org/10.1016/j.compchemeng.2015.04.030.

35 35 Bertran, M.O., Frauzem, R., Sańchez‐Arcilla, A.S. et al. (2017). A generic methodology for processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering 106: 892–910. https://doi.org/10.1016/j.compchemeng.2017.01.030.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Process Intensification and Integration for Sustainable Design»

Представляем Вашему вниманию похожие книги на «Process Intensification and Integration for Sustainable Design» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Process Intensification and Integration for Sustainable Design»

Обсуждение, отзывы о книге «Process Intensification and Integration for Sustainable Design» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x