Ashish Tewari - Foundations of Space Dynamics

Здесь есть возможность читать онлайн «Ashish Tewari - Foundations of Space Dynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Foundations of Space Dynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Foundations of Space Dynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Foundations of Space Dynamics offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author—a noted expert on the topic—covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples. Written in an accessible and concise style, Foundations of Space Dynamics highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples. This important book: Covers space dynamics with a systematic and comprehensive approach Designed to be a practical text filled with real-world examples Contains information on the most current applications Includes up-to-date topics from orbital perturbations to gravity-gradient stabilization Offers a deep understanding of space dynamics often lacking in other textbooks Written for undergraduate and graduate students and professionals in aerospace engineering, Foundations of Space Dynamics offers an introduction to the most current information on orbital mechanics and dynamics.

Foundations of Space Dynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Foundations of Space Dynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.4 Particle Dynamics

A particle is defined to have a finite mass but infinitesimal dimensions, and is therefore regarded to be a point mass. Since a particle has negligible dimensions, its position in space is completely determined by the radius vector, картинка 260, measured from a fixed point, o , at any instant of time , картинка 261. The components of картинка 262are resolved in a right‐handed reference frame with origin at o , having three mutually perpendicular axes denoted by the unit vectors картинка 263, and картинка 264, and are defined to be the Cartesian position coordinates, картинка 265, of the particle along the respective axes, картинка 266, as shown in Fig. 2.1. The velocity , Foundations of Space Dynamics - изображение 267, of the particle is defined to be the time derivative of the radius vector, and given by

(2.18) Foundations of Space Dynamics - изображение 268

Figure 21The position vector of a particle resolved in an inertial - фото 269

Figure 2.1The position vector, картинка 270, of a particle resolved in an inertial reference frame using Cartesian coordinates, ( картинка 271).

If the reference frame, картинка 272, used to measure the velocity of the particle is at rest, then the components of the velocity, картинка 273, resolved along the axes of the frame, картинка 274, and картинка 275, are simply the time derivatives of the position coordinates, картинка 276, and картинка 277, respectively. However, if the origin, картинка 278, of the reference frame itself is moving with a velocity, картинка 279, and the frame, картинка 280, is rotating with an angular velocity, картинка 281, with respect to an inertial frame 3, then the velocity of the moving reference frame must be vectorially added to that of the particle in order to derive the net velocity of the particle in the stationary frame as follows:

(2.19) The last term on the righthand side of Eq 219is the change caused by - фото 282

The last term on the right‐hand side of Eq. (2.19)is the change caused by rotating axes, картинка 283, each of which have the same angular velocity, картинка 284. The relationship between the position and velocity described by a vector differential equation, either Eq. (2.18)or Eq. (2.19), is termed the kinematics of the particle.

Since the velocity of the particle could be varying with time, the acceleration , of the particle is defined to be the time derivative of the velocity vector - фото 285, of the particle is defined to be the time derivative of the velocity vector, and is given by

(2.20) with the understanding that the derivatives are taken with respect to a - фото 286

with the understanding that the derivatives are taken with respect to a stationary reference frame. If the reference frame in which the position and velocity of the particle are resolved is itself moving such that its origin, Foundations of Space Dynamics - изображение 287, has an instantaneous velocity, Foundations of Space Dynamics - изображение 288and an instantaneous acceleration, Foundations of Space Dynamics - изображение 289, and its axes are rotating with an instantaneous angular velocity, all measured in a stationary frame then the net acceleration of the particle - фото 290, all measured in a stationary frame, then the net acceleration of the particle is given by

(2.21) Equation 221 is an alternative kinematical description of the particles - фото 291

Equation ( 2.21) is an alternative kinematical description of the particle's motion, and can be regarded as being equivalent to that given by Eq. (2.19), which has been differentiated in time according to the chain rule. Equation ( 2.21) is useful in finding the acceleration of the particle from the position and velocity measured in a moving reference frame. The first two terms on the right‐hand side of Eq. (2.21)represent the net acceleration due to the origin of the moving frame. The term Foundations of Space Dynamics - изображение 292is the Coriolis acceleration , and Foundations of Space Dynamics - изображение 293the centripetal acceleration of the particle in the moving reference frame. The term картинка 294is the effect of the angular acceleration of the reference frame, whereas картинка 295is the acceleration due to a changing magnitude of картинка 296, and would be the only acceleration had the reference frame been stationary.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Foundations of Space Dynamics»

Представляем Вашему вниманию похожие книги на «Foundations of Space Dynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Foundations of Space Dynamics»

Обсуждение, отзывы о книге «Foundations of Space Dynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x