Mikhail Moklyachuk - Convex Optimization

Здесь есть возможность читать онлайн «Mikhail Moklyachuk - Convex Optimization» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Convex Optimization: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Convex Optimization»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book provides easy access to the basic principles and methods for solving constrained and unconstrained convex optimization problems. Included are sections that cover: basic methods for solving constrained and unconstrained optimization problems with differentiable objective functions; convex sets and their properties; convex functions and their properties and generalizations; and basic principles of sub-differential calculus and convex programming problems.
provides detailed proofs for most of the results presented in the book and also includes many figures and exercises for a better understanding of the material. Exercises are given at the end of each chapter, with solutions and hints to selected exercises given at the end of the book. Undergraduate and graduate students, researchers in different disciplines, as well as practitioners will all benefit from this accessible approach to convex optimization methods.

Convex Optimization — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Convex Optimization», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We can formulate the following rule of indeterminate Lagrange multipliers for solving constrained optimization problems with equality constraints:

1 1) Write the Lagrange function

2 2) Write the necessary conditions for the extremum of the function L, that is:

3 3) Find the stationary points, that is, the solutions of these equations, provided that not all Lagrange multipliers λ0, λ1, … , λm are zero.

4 4) Find a solution to the problem among the stationary points or prove that the problem has no solutions.

1.4.2. Problems with equality and inequality constraints

Let fi : ℝ n→ ℝ be differentiable functions of n real variables. The constrained optimization problem with equality and inequality constraints is the following problem:

[1.3] We will formulate the necessary conditions for solution of the problem 13 - фото 170

We will formulate the necessary conditions for solution of the problem [1.3].

THEOREM 1.19.– ( Theorem on indeterminate Lagrange multipliers ) Let картинка 171be a point of local solution of the problem [1.3], and let the functions fi ( x ), i = 0, … , m + s , be continuously differentiable in some neighborhood U of the point Then there will exist the Lagrange multipliers λ 0 λ 1 λ ms not all - фото 172. Then there will exist the Lagrange multipliers λ 0, λ 1, … , λ m+s, not all equal to zero, such that for the Lagrange function

the following conditions hold true stationarity condition with respect to x - фото 173

the following conditions hold true:

– stationarity condition with respect to x

– complementary slackness condition

– non-negativity condition

Consequently, the rule of indeterminate Lagrange multipliers for solving constrained optimization problems with equality and inequality constraints is as follows:

1 1) Write the Lagrange function

2 2) Write the necessary conditions:– stationarity condition– complementary slackness condition– non-negativity condition

3 3) Find the critical points, that is, all admissible points that satisfy the necessary conditions with the Lagrange multiplier λ0 = 0 and λ0 ≠ 0.

4 4) Find a solution to the problem among the stationary points or prove that the problem has no solutions.

REMARK 1.1.– Using the rule of indeterminate Lagrange multipliers for solving constrained optimization problems with equality constraints, one can choose the number λ 0as both positive and negative. For constrained optimization problems with equality and inequality constraints, the sign of λ 0is significant.

EXAMPLE 1.2.– Solve the constrained optimization problem

Convex Optimization - изображение 174

The only obvious solution to this problem is the point картинка 175. We solve the problem by the Lagrange method.

1 1) Write the Lagrange function .

2 2) Write the stationary equations

3 3) If λ0 = 1, we get the equationsThe first equation is incompatible with the condition . Therefore, the system of equationshas no solutions.

4 4) If λ0 = 0, then x1 = 0, x2 = 0 is a solution of the system of equations.

Answer . (0, 0) ∈ absmin.

Example 1.2 shows that by applying the rule of indeterminate Lagrange multipliers, it is not always possible to take λ 0= 1.

EXAMPLE 1.3.– Solve the constrained optimization problem

where a 0 and b 0 are given numbers Solution 1 1 Write out the - фото 176

where a > 0 and b > 0 are given numbers.

Solution .

1 1) Write out the (regular) Lagrange function (as indicated in theorem 1.15 the regularity condition is satisfied here):

2 2) Since

the system of equations for determination of stationary points has the form:

This system of equations has three solutions 1 3 Next we have For the three - фото 177

This system of equations has three solutions:

1 3 Next we have For the three solutions found this matrix takes the form - фото 178

1 3) Next we have

For the three solutions found, this matrix takes the form accordingly

Convex Optimization - изображение 179

The condition Convex Optimization - изображение 180, i = 1, … , m , here is of the form Convex Optimization - изображение 181. For the first two solutions, this means that h 2= 0 and h 1= 0, respectively. It is clear from this that matrices A 1and A 2satisfy the conditions of theorem 1.17 (although they are not positive definite). Therefore, the points (0, 1), (1, 0) are strict local solutions of the problem. For the matrix, A 3conditions of theorem 1.17 are not satisfied. That is why the point

cannot be a solution of the minimization problem This point is a local - фото 182

cannot be a solution of the minimization problem. This point is a local solution of the maximization problem of the same function under the same restrictions.

Answer . locmin locmin EXAMPLE 14 Solve the constrained optimiza - фото 183∈ locmin, locmin EXAMPLE 14 Solve the constrained optimization problem - фото 184∈ locmin,

EXAMPLE 14 Solve the constrained optimization problem Solution 1 1 - фото 185

EXAMPLE 1.4.– Solve the constrained optimization problem

Solution 1 1 Write out the Lagrange function 2 2 Write the necessary - фото 186

Solution.

1 1) Write out the Lagrange function

2 2) Write the necessary conditions:– stationarity condition– complementary slackness condition– non-negativity condition λ0 ≥ 0, λ1 ≥ 0.

3 3) If λ0 = 0, then, in accordance with the condition of stationarity we have λ1 = 0, and λ2 = 0. So all Lagrange multipliers are zero. This contradicts the conditions of the Lagrange theorem 1.19. Take λ0 = 1/2. Let λ1 ≠ 0. Then, under the complementary slackness condition we have 2x1 – x2 + x3 – 5 = 0. We express x1, x2, x3 through λ1, λ2 and substitute into the equationWe get λ1 = –9/14 < 0. This contradicts the non-negativity condition. Let λ1 = 0, then x1 = x2 = x3 = 1 is a critical point.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Convex Optimization»

Представляем Вашему вниманию похожие книги на «Convex Optimization» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Convex Optimization»

Обсуждение, отзывы о книге «Convex Optimization» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x