Methodologies in Amine Synthesis

Здесь есть возможность читать онлайн «Methodologies in Amine Synthesis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Methodologies in Amine Synthesis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Methodologies in Amine Synthesis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Provides a unique overview of efficient synthetic routes to one of the most important compound classes in organic and pharmaceutical chemistry! Amines are among the most important compounds in organic chemistry due to their wide occurrence in natural products, drugs, crop protection compounds, and advanced materials. For example, the majority of drugs are amines or contain functional groups derived from amines. Powerful and efficient methods for the introduction of the amino group are therefore of great importance to synthetic chemists in academia and industry.
Methodologies in Amine Synthesis: Challenges and Applications Only up-to-date and comprehensive book on the preparation of amines ? one of the most frequently occurring compound classes found in natural products, bioactive molecules, and advanced materials. Presents efficient and useful synthetic methods, highlights opportunities / challenges as well as applications in pharmaceutical chemistry and materials science. Chapters are compiled by well-known experts in the field. One of them edited the previous books
(2001) and
(2007). The book
is a musthave for chemists in academia and industry working in the field of organic synthesis and catalysis, natural product chemistry, drug synthesis and pharmaceutical chemistry, as well as materials science.

Methodologies in Amine Synthesis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Methodologies in Amine Synthesis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.5 Summary and Conclusions

Nitrogen radicals are powerful intermediates in synthetic chemistry. Their ability to undergo selective H‐atom transfer reactions represents a valuable tool for the assembly and functionalization of organic molecules. Although the large body of work and examples are already available, several challenges are still unsolved. For example, the ability to control in a general sense the stereochemical outcome of these transformations is currently not possible but would be highly desirable. Furthermore, these processes have rarely been used in large‐scale settings, especially at an industrial level, so further work would be required to identify reaction protocols that can be translated into process development. Finally, an area where continuous development and application is required involves the use of these strategies for the late‐stage modification of complex and bioactive materials. The ability to selectively target specific and unactivated sp 3‐centers, where a functionality can be introduced, would represent a powerful tool in order to better explore chemical space around lead molecules.

References

1 1 Ricci, A. (2008). Amino Group Chemistry. Weinheim, Germany: Wiley‐VCH.

2 2 Zard, S.Z. (2008). Chemical Society Reviews 37: 1603–1618.

3 3 Stateman, L.M., Nakafuku, K.M., and Nagib, D.A. (2018). Synthesis 50: 1569.

4 4 Chen, J.‐R., Hu, X.‐Q., Lu, L.Q., and Xiao, W.‐J. (2016). Chemical Society Reviews: 2044–2056.

5 5 Stella, L. (1983). Angewandte Chemie, International Edition 22: 337.

6 6 Wolff, M.E. (1963). Chemical Reviews 63: 55.

7 7 Hofmann, A.W. (1879). Berichte der Deutschen Chemischen Gesellschaft 12: 984–990.

8 8 Nechab, M., Mondal, S., and Bertrand, M.P. (2014). Chemistry ‐ A European Journal 20: 16034.

9 9 Katohgi, M., Togo, H., Yamaguchi, K., and Yokoyama, M. (1999). Tetrahedron 55: 14885–14900.

10 10 Luo, Y.‐R. (2003). Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press.

11 11 Walton, J.C. (2014). Accounts of Chemical Research 47: 1406.

12 12 Lessard, J., Griller, D., and Ingold, K.U. (1980). Journal of the American Chemical Society 102: 3262.

13 13 Chow, Y.L., Danen, W.C., Nelsen, S.F., and Rosenblatt, D.H. (1978). Chemical Reviews 78: 243.

14 14 Angelini, L., Davies, J., Simonetti, M. et al. (2019). Angewandte Chemie, International Edition 58: 5003.

15 15 Bietti, M. (2018). Angewandte Chemie, International Edition 57: 16618–16637.

16 16 Hioe, J., Šakić, D., Vrček, V., and Zipse, H. (2015). Organic & Biomolecular Chemistry 13: 157.

17 17 Forrester, A.R., Fullerton, J.D., and McConnachie, G. (1983). Journal of the Chemical Society, Perkin Transactions 1: 1759.

18 18 Forrester, A.R., Napier, R.J., and Thomson, R.H. (1981). Journal of the Chemical Society, Perkin Transactions 1: 984.

19 19 Forrester, A.R., Gill, M., Sadd, J.S., and Thomson, R.H. (1979). Journal of the Chemical Society, Perkin Transactions 1: 612.

20 20 Forrester, A.R., Gill, M., Sadd, J.S., and Thomson, R.H. (1975). Journal of the Chemical Society, Chemical Communications: 291.

21 21 Narasaka, K. and Kitamura, M. (2005). European Journal of Organic Chemistry: 4505.

22 22 Davies, J., Booth, S.G., Essafi, S. et al. (2015). Angewandte Chemie, International Edition 54: 14017.

23 23 Davies, J., Svejstrup, T.D., Reina, D.F. et al. (2016). Journal of the American Chemical Society 138: 8092.

24 24 Davies, J., Morcillo, S.P., Douglas, J.J., and Leonori, D. (2018). Chemistry ‐ A European Journal 24: 12154.

25 25 Li, J., Zhang, P., Jiang, M. et al. (2017). Organic Letters 19: 1994.

26 26 Li, Y., Mao, R., and Wu, J. (2017). Organic Letters 19: 4472.

27 27 Shu, W. and Nevado, C. (2017). Angewandte Chemie, International Edition 56: 1881.

28 28 Jiang, H., An, X., Tong, K. et al. (2015). Angewandte Chemie, International Edition 54: 4055.

29 29 Shen, X., Zhao, J.‐J., and Yu, S. (2018). Organic Letters 20: 5523.

30 30 Chen, L., Guo, L.‐N., Ma, Z.‐Y. et al. (2019). The Journal of Organic Chemistry 84: 6475–6482.

31 31 Wu, K., Wang, L., Colón‐Rodríguez, S. et al. (2019). Angewandte Chemie, International Edition 58: 1774–1778.

32 32 Cismenia, M.A. and Yoon, T.P. (2015). Chemical Science 6: 5426.

33 33 Duncton, M.A.J. (2011). Medicinal Chemistry Communications 2: 1135.

34 34 Chen, H., Fan, W., Yuan, X.‐A., and Yu, S. (2019). Nature Communications 10: 4743.

35 35 Quin, Q. and Yu, S. (2015). Organic Letters 17: 1894.

36 36 Jiang, H. and Studer, A. (2018). Angewandte Chemie, International Edition 57: 1692.

37 37 Morcillo, S.P., Dauncey, E.M., Kim, J.H. et al. (2018). Angewandte Chemie, International Edition 57: 12945.

38 38 Davies, J., Sheikh, N.S., and Leonori, D. (2017). Angewandte Chemie, International Edition 56: 13361.

39 39 Miller, D.C., Choi, G.J., Orbe, H.S., and Knowles, R.R. (2015). Journal of the American Chemical Society 137: 13492.

40 40 Choi, G.J., Zhu, Q., Miller, D.C. et al. (2016). Nature 539: 268–271.

41 41 Chu, J.C.K. and Rovis, T. (2016). Nature 539: 272–275.

42 42 Xu, B. and Tambar, U.K. (2019). ACS Catalysis 9: 4627–4631.

43 43 Thullen, S.M., Treacy, M.S., and Rovis, T. (2019). Journal of the American Chemical Society 141: 14062–14067.

44 44 Zhang, H. and Muniz, K. (2017). ACS Catalysis 7: 4122.

45 45 Becker, P., Duhamel, T., Stein, C.J. et al. (2017). Angewandte Chemie, International Edition 56: 8004.

46 46 Martinez, C. and Muniz, K. (2015). Angewandte Chemie, International Edition 54: 8287.

47 47 Bergès, J., García, B., and Muñiz, K. (2018). Angewandte Chemie, International Edition 57: 15891–15895.

48 48 Wappes, E.A., Nakafuku, K.M., and Nagib, D.A. (2017). Journal of the American Chemical Society 139: 10204.

49 49 Nakafuku, K.M., Twumasi, R.K., Vanitcha, A. et al. (2019). The Journal of Organic Chemistry 84: 13065–13072.

50 50 Gomez‐Suarez, A., Gasperini, D., Vummaleti, S.V.C. et al. (2014). ACS Catalysis 4: 2701.

51 51 Hernandez, R., Rivera, A., Salazar, J.A., and Suarez, E. (1980). Journal of the Chemical Society, Chemical Communications: 958.

52 52 Francisco, C.G., Herrera, A.J., and Suarez, E. (2003). The Journal of Organic Chemistry 68: 1012.

53 53 Francisco, C.G., Herrera, A.J., Martin, A. et al. (2007). Tetrahedron 48: 6384.

54 54 Martin, A., Perez‐Mertin, I., and Suarez, E. (2009). Tetrahedron 65: 6147.

55 55 Tang, N., Wu, X., and Zhu, C. (2019). Chem. Sci. 10: 6915–6919.

56 56 Na, C.G. and Alexanian, E.J. (2018). Angewandte Chemie, International Edition 57: 13106–13109.

57 57 Short, M.A., Blackburn, J.M., and Roizen, J.L. (2017). Angewandte Chemie, International Edition 57: 296.

58 58 Ayer, S.K. and Roizen, J.L. (2019). The Journal of Organic Chemistry 84: 3508–3523.

59 59 Torres‐Ochoa, R.O., Leclair, A., Wang, Q., and Zhu, J. (2019). Chemistry ‐ A European Journal 25: 9477–9484.

60 60 Groendyke, B.J., AbuSalim, D.I., and Cook, S.P. (2016). Journal of the American Chemical Society 138: 12771.

61 61 Li, Z., Wang, Q., and Zhu, J. (2018). Angewandte Chemie, International Edition 57: 13288.

62 62 Zhang, Z., Zhang, X., and Nagib, D.A. (2019). Chem 5: 3127.

3 Radical‐Based C—N Bond Formation in Photo/Electrochemistry

Binbin Huang1, Yating Zhao2, and Wujiong Xia1

1Harbin Institute of Technology, State Key Lab of Urban Water Resource and Environment, School of Science, Shenzhen, 518055, China

2Quzhou University, College of Chemical and Material Engineering, Quzhou, China, 324000

3.1 Introduction

As ubiquitous fundamental linkages, C—N bonds prevalently exist in various value‐added compounds such as natural products, pharmaceutical agents, functional materials, synthetic intermediates, and coordinating ligands. Thus, developing efficient methodologies for the construction of C—N bonds has always been a hot research goal in synthetic chemistry [1]. Among the existing approaches toward C—N bonds, cross‐dehydrohalogenative couplings of C—H/N—X (X = halide or pseudo ‐halide) bonds or C—X/N—H bonds are generally well established, highly efficient, and consequently widely used, including the classical Buchwald–Hartwig amination and Ullman amination. However, from the perspective of green chemistry, these methods are not the ideal choices because the requirement for prefunctionalization of the coupling substrates considerably lowers their atom and step economy.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Methodologies in Amine Synthesis»

Представляем Вашему вниманию похожие книги на «Methodologies in Amine Synthesis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Methodologies in Amine Synthesis»

Обсуждение, отзывы о книге «Methodologies in Amine Synthesis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x