Pues bien, en matemáticas algo análogo jamás se había propuesto antes de Langlands –un matemático activo que actualmente trabaja como Profesor Emérito en la oficina que alguna vez fue la de Einstein en el Instituto de Estudios Avanzados de Princeton–. Langlands ha sido reconocido con los más grandes premios y honores que un matemático puede alcanzar, con la excepción de la Medalla Fields (el Premio Nobel en Matemáticas), por cuestiones de edad (solo se puede recibir la Medalla Fields cuando se tiene menos de cuarenta años de edad).
La idea de base del Programa Langlands es la simetría, sin duda uno de los ejes verticales fundamentales del mundo y de la realidad. Lo que busca el Programa Langlands es sencillamente construir puentes en el numeroso archipiélago que son las matemáticas. Dicho escuetamente, el Programa Langlands se propone ordenar – matemáticamente– la información. “Crear orden a partir del caos”, algo que no resuena muy lejos para quienes conocen algo los trabajos de E. Lorenz sobre el caos, o de I. Prigogine sobre termodinámica del no equilibrio.
En matemáticas una conjetura tiene una connotación perfectamente distinta a la que se usa en filosofía o en epistemología, por ejemplo. Mientras que en estos campos tiene una acepción semejante a “verdad provisoria”, en matemáticas es una afirmación que se supone cierta, pero que no ha sido demostrada ni refutada. Algunos ejemplos conspicuos de conjeturas matemáticas son el último teorema de Fermat, la Conjetura de Goldbach, la hipótesis de Riemann, el Problema P vs NP, la Conjetura de Birch y Swinnerton-Dyer, o la Conjetura de Poincaré (demostrada hace poco por G. Perelman). Como se aprecia, sin ambages, se trata notablemente de los Problemas del Milenio (planteados por el prestigioso Instituto Clay de matemáticas).
En matemáticas una conjetura es bastante más que una “hipótesis de trabajo”. De entrada, es una afirmación cierta, pero que debe ser confirmada o refutada.
En el Programa de Langlands, la unidad básica no son ya los números naturales. Estos son transformados en espacios vectoriales, con lo cual se ganan muchos grados de libertad. Los números cobran vida en forma de espacios vectoriales. Por ejemplo, solo es posible restar 2 a 3 de un modo preciso. Pero es posible inscribir una recta en un plano de muchas formas diferentes. Mientras que los números naturales –Ν–, forman un conjunto, los espacios vectoriales forman una estructura más sofisticada: una categoría. Pues bien, la teoría matemática de categorías se adapta muy bien a la informática, y a través suyo a las ciencias de la computación. La computación del futuro se basará más en la teoría de categorías que en la teoría de conjuntos.
En otras palabras, el Programa Langlands organiza información previamente inaccesible en la forma de patrones regulares, tejiendo así un fino tapiz de números, simetrías y ecuaciones. El resultado es la integración de campos, problemas y dimensiones que hasta la fecha permanecían disyuntas. En términos elementales, análogamente a lo que hacen las ciencias de la complejidad, el Programa Langlands nos ayuda a pensar en términos de patrones (algo que no es difícil de llevar a cabo).
En consecuencia, ya deja de ser cierto que los seres humanos –y los matemáticos– piensan, o bien en términos geométricos o bien en términos algebraicos; digamos en términos de mapas, cuadros y figuras, o bien en función de signos y las relaciones entre estos. Más auténtica y radicalmente, podemos aprender a pensar en la forma de síntesis, algo perfectamente inopinado para una cultura y una civilización acostumbrada a pensar en términos de análisis.
Un texto en donde se estudian estos y otros temas próximos y afines es el de E. Frank, con un título bizarro y profundo a la vez: Amor y matemáticas (Bogotá, Ed. Ariel, 2015). Un documental de cerca de una hora con el título Rites of Love and Math se encuentra disponible en YouTube, para aquellos que tienen (o tenemos) una cultura más visual.
En resumen, el Programa Langlands es matemáticas de punta que nos conduce y nos sitúa a la vez en la frontera del trabajo en matemáticas, allí donde, sorpresivamente, nos encontramos con otros campos como los grupos cuánticos, la criptografía, el grupo de gauge, la teoría de branas, en fin, sin ambages, el punto de encuentro entre las matemáticas y la vida. Un punto nada trivial.
¿Qué es el principio de acción de Hamilton?
Los seres humanos son sistemas clásicos que se mueven en un mundo que no es, sin embargo, enteramente clásico. La ciencia clásica y el mundo clásico se caracterizan por ser deterministas, sujetos a leyes; predecibles, por tanto, y susceptibles de ser explicados en términos de la mecánica clásica. Esto es, por ejemplo, en términos de acción-reacción, en función de fuerzas y demás.
Ese mundo clásico es ulteriormente explicado y entendido a la vez por Newton, con todo y sus adalides y satélites. Gente como Galileo y Laplace, Kepler y Descartes, Copérnico y Gibbs. Estos son, dicho en otras palabras, los fundamentos de la modernidad, y que en términos sociológicos o históricos corresponde al ascenso y al triunfo ulterior de la burguesía; primero con la revolución francesa de 1789 y luego con la Revolución Industrial en el siglo XIX. Naturalmente, otros nombres, enfoques, teorías y disciplinas vienen al mismo tiempo a afirmar y a desarrollar este cuadro general.
Una de las formas como la ciencia clásica y el mundo clásico son superados es mediante la reformulación más abstracta de sus fundamentos. Esto es justamente lo que acontece gracias a los trabajos del irlandés W. R. Hamilton (1805-1865). Hamilton lleva a cabo una reformulación de la mecánica newtoniana, gracias a la cual se puede hacer el tránsito hacia la teoría cuántica de campos y la mecánica cuántica.
Notablemente, mientras que las leyes de Newton describen cómo un sistema se desarrolla en el tiempo, Hamilton estudia todas las rutas disponibles hacia el futuro y elige la mejor de todas ellas. Es esto lo que se conoce como el principio de acción de Hamilton.
En verdad, este principio afirma que, en algunas circunstancias, el mundo puede seguir más de una historia. Esto es, el mundo no está sujeto a las determinaciones del pasado, a la necesidad de los hechos (lo que quiera que ello sea), o las determinaciones del inicio de un acontecimiento. En otras palabras, un sistema cualquiera minimiza una determinada cantidad, denominada “acción”, de tal suerte que, a partir de algún momento inicial, el sistema en consideración considera todas las historias posibles con vistas a su momento final.
La historia de la ciencia y de la cultura humana tiene una deuda enorme con William Rowan Hamilton. Se trata del hecho de que gracias a este físico, astrónomo y matemático es posible tomar distancia, desde el interior de un sistema clásico, en contra del determinismo. Esto es, la creencia según la cual, el pasado contiene el futuro, y la línea de tiempo que conduce del pasado al presente permite determinar sin más el futuro. En realidad, nos encontramos a menos de un metro de distancia de la idea de bifurcaciones.
Así, la “ley de la menor acción” establece la forma como un fenómeno determinado se mueve bajo la influencia de fuerzas. Esta ley, dice sin más, grosso modo , que el fenómeno en cuestión considerará todas las alternativas posibles, pero que seguirá aquella que implique el menor trabajo o esfuerzo posible. En verdad, las unidades en las que se mide la acción de Hamilton son energía por tiempo. Así, estaban sentadas todas las condiciones para el advenimiento de ideas provenientes de Planck, y con él, toda la historia subsiguiente de la física cuántica.
Читать дальше