Hong Meng - Organic Electronics for Electrochromic Materials and Devices

Здесь есть возможность читать онлайн «Hong Meng - Organic Electronics for Electrochromic Materials and Devices» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Organic Electronics for Electrochromic Materials and Devices: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Organic Electronics for Electrochromic Materials and Devices»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore this comprehensive overview of organic electrochromic materials and devices from a leading voice in the industry  Organic Electronics for Electrochromic Materials and Devices The distinguished author places a strong focus on recent research results from universities and private firms from around the world and addresses the issues and challenges faced by those who apply organic electrochromic technology in the real world. With these devices quickly becoming the go-to display technology in the field of electronic information, this resource will quickly become indispensable to all who work or study in the field of optics. 
Readers will also benefit from the inclusion of: 
A thorough introduction to organic electrochromism, including its history and the mechanisms of electrochromic devices An exploration of polymer electrolytes for electrochromic applications, including their requirements and types A discussion of electrochromic small molecules, including the development of technology in conjugated polymer and violene-cyanine hybrids A treatment of Prussian blue and metallohexacyanates, including their backgrounds, technology development, crystal structures, synthesis, nanocomposites, and assembled electrochromic devices Perfect for materials scientists, polymer chemists, organic chemists, physical chemists, and inorganic chemists, 
 will also earn a place in the libraries of physicists and those who work in the optical industry who seek a one-stop reference that covers all aspects of organic electrochromic materials.

Organic Electronics for Electrochromic Materials and Devices — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Organic Electronics for Electrochromic Materials and Devices», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

References

1 1 Nguyen, C.A., Xiong, S., Ma, J. et al. (2009). The Journal of Physical Chemistry B 113: 8006.

2 2 Fenton, D.E., Parker, J.M., and Wright, P.V. (1973). Polymer 14: 589.

3 3 Shriver, D. and Bruce, P. (1995). Solid State Electrochemistry, 95. Cambridge: Cambridge University Press.

4 4 Choudhury, N., Sampath, S., and Shukla, A. (2009). Energy & Environmental Science 2: 55.

5 5 Agrawal, R. and Pandey, G. (2008). Journal of Physics D: Applied Physics 41: 223001.

6 6 Meyer, W.H. (1998). Advanced Materials 10: 439.

7 7 Ramesh, S. and Lu, S. (2012). Journal of Applied Polymer Science 126: 484.

8 8 Wu, T.‐Y., Li, W.‐B., Kuo, C.‐W. et al. (2013). International Journal of Electrochemical Science: 10720.

9 9 Sa'adun, N.N., Subramaniam, R., and Kasi, R. (2014). The Scientific World Journal: 2014.

10 10 Susan, M.A.B.H., Kaneko, T., Noda, A., and Watanabe, M. (2005). Journal of the American Chemical Society 127: 4976.

11 11 Thakur, V.K., Ding, G., Ma, J. et al. (2012). Advanced Materials 24: 4071.

12 12 Sekhon, S., Arora, N., and Singh, H.P. (2003). Solid State Ionics 160: 301.

13 13 Feuillade, G. and Perche, P. (1975). Journal of Applied Electrochemistry 5: 63.

14 14 Song, J., Wang, Y., and Wan, C.C. (1999). Journal of Power Sources 77: 183.

15 15 Chen, P., Liang, X., Wang, J. et al. (2017). Journal of Sol‐Gel Science and Technology 81: 850.

16 16 Azens, A., Avendano, E., Backholm, J. et al. (2005). Materials Science and Engineering B 119: 214.

17 17 Naji, A., Ghanbaja, J., Willmann, P. et al. (1996). Journal of Power Sources 62: 141.

18 18 Fey, G., Hsieh, M., Jaw, H., and Lee, T. (1993). Journal of Power Sources 44: 673.

19 19 Takami, N., Ohsaki, T., and Inada, K. (1992). Journal of the Electrochemical Society 139: 1849.

20 20 Kumar, B., Schaffer, J.D., Nookala, M., and Scanlon, L.G. Jr. (1994). Journal of Power Sources 47: 63.

21 21 Imoto, K., Takahashi, K., Yamaguchi, T. et al. (2003). Solar Energy Materials and Solar Cells 79: 459.

22 22 Agnihotry, S., Pradeep, P., and Sekhon, S. (1999). Electrochimica Acta 44: 3121.

23 23 Cowie, J.M.G. and Arrighi, V. (2007). Polymers: Chemistry and Physics of Modern Materials. CRC press.

24 24 Wang, Y., Chen, K.S., Mishler, J. et al. (2011). Applied Energy 88: 981.

25 25 Miller, M. and Bazylak, A. (2011). Journal of Power Sources 196: 601.

26 26 Beaujuge, P.M. and Reynolds, J.R. (2010). Chemical Reviews 110: 268.

27 27 Gaupp, C.L., Zong, K., Schottland, P. et al. (2000). Macromolecules 33: 1132.

28 28 Pennarun, P.‐Y. and Jannasch, P. (2005). Solid State Ionics 176: 1103.

29 29 Pennarun, P.‐Y., Papaefthimiou, S., Yianoulis, P., and Jannasch, P. (2007). Solar Energy Materials and Solar Cells 91: 330.

30 30 Boehme, J.L., Mudigonda, D.S., and Ferraris, J.P. (2001). Chemistry of Materials 13: 4469.

31 31 Yang, C.‐H., Huang, L.‐R., Chih, Y.‐K., and Chung, S.‐L. (2007). The Journal of Physical Chemistry C 111: 3786.

32 32 Reiter, J., Krejza, O., and Sedlaříková, M. (2009). Solar Energy Materials and Solar Cells 93: 249.

33 33 C. Sherwood, F. Price, R. Stein, "Effect of shear on the crystallization kinetics of poly (ethylene oxide) and poly (e‐caprolactone) melts", presented at Journal of Polymer Science, Polymer Symposia, 1978.

34 34 Armand, M., Chabagno, J., and Duclot, M. (1978). Second International Meeting on Solid Electrolytes, presented at Extended Abstracts (20−22 September), St. Andrews, Scotland.

35 35 Pitawala, H., Dissanayake, M., and Seneviratne, V. (2007). Solid State Ionics 178: 885.

36 36 Pedone, D., Armand, M., and Deroo, D. (1988). Solid State Ionics 28: 1729.

37 37 Visco, S.J., Liu, M., Doeff, M.M. et al. (1993). Solid State Ionics 60: 175.

38 38 Baudry, P., Aegerter, M.A., Deroo, D., and Valla, B. (1991). Journal of the Electrochemical Society 138: 460.

39 39 Su, L., Wang, H., and Lu, Z. (1998). Materials Chemistry and Physics 56: 266.

40 40 Desai, S., Shepherd, R.L., Innis, P.C. et al. (2011). Electrochimica Acta 56: 4408.

41 41 Yang, C.‐H., Chong, L.‐W., Huang, L.‐M. et al. (2005). Materials Chemistry and Physics 91: 154.

42 42 Nishikitani, Y., Uchida, S., Asano, T. et al. (2008). The Journal of Physical Chemistry C 112: 4372.

43 43 Mendoza, N., Paraguay‐Delgado, F., Hechavarría, L. et al. (2011). Solar Energy Materials and Solar Cells 95: 2478.

44 44 Panero, S., Scrosati, B., Baret, M. et al. (1995). Solar Energy Materials and Solar Cells 39: 239.

45 45 Vasilopoulou, M., Raptis, I., Argitis, P. et al. (2006). Microelectronic Engineering 83: 1414.

46 46 Y. Zhou, P. Gu, J. Tang, "Electrochromic device with a polymer ionic conductor", presented at Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XII, 1993.

47 47 Andersson, A.M., Granqvist, C.G., and Stevens, J.R. (1989). Applied Optics 28: 3295.

48 48 Argun, A., Cirpan, A., and Reynolds, J. (2003). Advanced Materials 15: 1338.

49 49 Oral, A., Koyuncu, S., and Kaya, İ. (2009). Synthetic Metals 159: 1620.

50 50 Tung, T.‐S. and Ho, K.‐C. (2006). Solar Energy Materials and Solar Cells 90: 521.

51 51 Yang, X., Cong, S., Li, J. et al. (2019). Solar Energy Materials and Solar Cells 200: 109952.

52 52 Kim, J.T., Song, J., Ryu, H., and Ah, C.S. (2020). Advanced Optical Materials: 1901464.

53 53 Fabretto, M., Vaithianathan, T., Hall, C. et al. (2008). Electrochimica Acta 53: 2250.

54 54 Jia, P., Yee, W.A., Xu, J. et al. (2011). Journal of Membrane Science 376: 283.

55 55 Lang, A.W., Österholm, A.M., and Reynolds, J.R. (2019). Advanced Functional Materials 29: 1903487.

56 56 Çelik, E. (2013). Journal of Materials: 2013.

57 57 Zheng, R., Zhang, J., Jia, C. et al. (2017). Polymer Chemistry 8: 6981.

58 58 Li, J., Qi, S., Liang, J. et al. (2015). ACS Applied Materials & Interfaces 7: 14140.

59 59 Liang, J., Li, L., Niu, X. et al. (2013). Nature Photonics 7: 817.

60 60 Sun, H., You, X., Jiang, Y. et al. (2014). Angewandte Chemie International Edition 53: 9526.

61 61 Ko, J., Kim, Y.‐J., and Kim, Y.S. (2016). ACS Applied Materials & Interfaces 8: 23854.

62 62 Han, L., Lu, X., Wang, M. et al. (2017). Small 13: 1601916.

63 63 Cao, Y., Morrissey, T.G., Acome, E. et al. (2017). Advanced Materials 29: 1605099.

64 64 Canadell, J., Goossens, H., and Klumperman, B. (2011). Macromolecules 44: 2536.

65 65 Yoon, J.A., Kamada, J., Koynov, K. et al. (2012). Macromolecules 45: 142.

66 66 Chao, A., Negulescu, I., and Zhang, D. (2016). Macromolecules 49: 6277.

67 67 Wei, Z., Yang, J.H., Zhou, J. et al. (2014). Chemical Society Reviews 43: 8114.

68 68 Xu, Z., Zhao, Y., Wang, X., and Lin, T. (2013). Chemical Communications 49: 6755.

69 69 White, S.R., Sottos, N.R., Geubelle, P.H. et al. (2001). Nature 409: 794.

70 70 Caruso, M.M., Delafuente, D.A., Ho, V. et al. (2007). Macromolecules 40: 8830.

71 71 Trask, R., Williams, G., and Bond, I. (2007). Journal of the Royal Society Interface 4: 363.

72 72 Gong, Z., Zhang, G., Zeng, X. et al. (2016). ACS Applied Materials & Interfaces 8: 24030.

73 73 Moon, H.C., Lodge, T.P., and Frisbie, C.D. (2015). Chemistry of Materials 27: 1420.

74 74 Michaelis, L. and Hill, E.S. (1933). The Journal of General Physiology 16: 859.

75 75 Seo, D.G. and Moon, H.C. (2018). Advanced Functional Materials 28: 1706948.

76 76 Zhou, N.C., Xu, C., Burghardt, W.R. et al. (2006). Macromolecules 39: 2373.

77 77 Jang, S., Moon, H.C., Kwak, J. et al. (2014). Macromolecules 47: 5295.

78 78 Alsalhy, Q.F., Rashid, K.T., Ibrahim, S.S. et al. (2013). Journal of Applied Polymer Science 129: 3304.

79 79 Saikia, B.J. and Dolui, S.K. (2016). Journal of Polymer Science Part A: Polymer Chemistry 54: 1842.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Organic Electronics for Electrochromic Materials and Devices»

Представляем Вашему вниманию похожие книги на «Organic Electronics for Electrochromic Materials and Devices» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Organic Electronics for Electrochromic Materials and Devices»

Обсуждение, отзывы о книге «Organic Electronics for Electrochromic Materials and Devices» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x