Hong Meng - Organic Electronics for Electrochromic Materials and Devices

Здесь есть возможность читать онлайн «Hong Meng - Organic Electronics for Electrochromic Materials and Devices» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Organic Electronics for Electrochromic Materials and Devices: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Organic Electronics for Electrochromic Materials and Devices»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore this comprehensive overview of organic electrochromic materials and devices from a leading voice in the industry  Organic Electronics for Electrochromic Materials and Devices The distinguished author places a strong focus on recent research results from universities and private firms from around the world and addresses the issues and challenges faced by those who apply organic electrochromic technology in the real world. With these devices quickly becoming the go-to display technology in the field of electronic information, this resource will quickly become indispensable to all who work or study in the field of optics. 
Readers will also benefit from the inclusion of: 
A thorough introduction to organic electrochromism, including its history and the mechanisms of electrochromic devices An exploration of polymer electrolytes for electrochromic applications, including their requirements and types A discussion of electrochromic small molecules, including the development of technology in conjugated polymer and violene-cyanine hybrids A treatment of Prussian blue and metallohexacyanates, including their backgrounds, technology development, crystal structures, synthesis, nanocomposites, and assembled electrochromic devices Perfect for materials scientists, polymer chemists, organic chemists, physical chemists, and inorganic chemists, 
 will also earn a place in the libraries of physicists and those who work in the optical industry who seek a one-stop reference that covers all aspects of organic electrochromic materials.

Organic Electronics for Electrochromic Materials and Devices — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Organic Electronics for Electrochromic Materials and Devices», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

To overcome these challenges, several future research directions are suggested as follows.

1 Improving electrolyte's electrochemical stable potential window (ESPW) value. The ESPWs are dependent on the cation and anion of the conducting salt and the solvent. It should be noted that in most cases, an increase in electrolyte ESPWs may result in the deterioration of other properties such as ionic conductivity and viscosity of electrolytes. The improvement of ESPWs could be achieved by exploring new organic solvents and new conducting salt or by optimizing/modifying the commonly used organic electrolytes. However, it is difficult to achieve all the requirements, such as high ESPW, high ionic conductivity, high physicochemical stability, low viscosity, and eco‐friendliness. Some tradeoffs may be reasonable in solving the practical problems.

2 Increasing the working temperature range for ES operation. Some additives like ethylene glycol may be explored to decrease the power temperature limit in aqueous electrolytes. Regarding organic electrolytes, the development of new organic solvent mixtures could possibly obtain electrolytes with a wider operating temperature range.

3 Optimizing the interaction effects between the electrolyte and electrode materials to improve the EC performance. In situ characterization methods such as fourier transform IR (FTIR) and Raman microscopy can be used to characterize the electrolytes in operating condition. The interface between an EC layer and electrolyte can be observed under conventional transmission electron microscopy (TEM) [136, 137].

4 Combining theoretical and experimental investigations to analyze, guide, and design electrolyte. The corresponding ionic mechanism can be simulated and interpreted by material calculations. It is necessary to fundamentally understand the mechanisms of electrolyte ion dynamics by using both theoretical modeling and experimental approaches.

5 Development of standard methods to evaluate the performance of electrolytes. It is necessary and important to develop proper and standardized methods to evaluate the performance of different electrolytes and their associated ECs.

Table 2.3 Comparison of the Li +conductivities of some reported solid polymer electrolytes.

Solid polymer electrolytes Type of electrolytes Anionic center Ionic conductivity (S/cm) at RT References
P(MEO‐MALi) Random copolymer −CO 2 − 1.5 × 10 −7 [163]
PAE 8‐ co ‐E 3SO 3Li Random copolymer −SO 3 − 2.0 × 10 −7 [164]
Random copolymer −(C 2O 4) 2B − 1.9 × 10 −7 [165]
POE Random copolymer ‐CF(CF 3) SO 3 − 1 × 10 −7 [166]
P(LiSMOE n)s Random copolymer −C 6H 5·SO 3 − 1.5 × 10 −7 [167]
Polyphosphazenes Random copolymer ‐SO 2N −SO 2CF 3 3.0 × 10 −6 [168]
Li[poly(styrenesulfonyl(trifluoromethylsulfonyl)imide) (PSTFSI)‐ co ‐methoxy poly(ethylene glycol) acrylate (MPEGA)] Random copolymer –SO 2N −SO 2CF 3 7.7 × 10 −6 [169]
Poly(2‐oxo‐1‐difuluoroethylene sulfonylimide) (LiPI)‐polyether Blended copolymer –CO 2CF 2SO 2N − 1 × 10 −6 [170]
P(LiSMOE n) Blended copolymer –CO 2 − 1.5 × 10 −7 [167]
Poly(5‐oxo‐3‐oxy‐4‐trifluoromethyl‐1,2,4‐pentafluoropentylene sulfonylimide lithium) (LiPPI) Blended copolymer −COCF(CF 3)O(CF 2) 2SO 2N − 1 × 10 −5 [171]
Poly (estercarbonate) (PEC) based Blended copolymer –SO 2N −SO 2CF 3 1 × 10 −9 [172]
LiTFSI Blended copolymer –SO 2(CF 2) 4SO 2N − 1 × 10 −6 [173]
LiPSFSI/PEO Blended copolymer –SO 2N −SO 2F 1 × 10 −8 [174]
poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI −)/PEO Blended copolymer –SO 2N −SO(NSO 2CF 3)CF 3 1 × 10 −8 [174]
PEO based Block copolymer –CO 2 − 1 × 10 −7 [175]
poly (ethylene glycol) macromer (PEGM) based Block copolymer –SO 2N −SO 2CF 3 2.3 × 10 −6 [176]
Polystyrene‐PEO based Block copolymer –SO 2N −SO 2CF 3 1.3 × 10 −5 [177]
PEO‐PSLiTFSI Block copolymer –SO 2N −SO 2CF 3 3.0 × 10 −8 [170]
Methacrylic‐PEO Block copolymer –SO 2N −SO 2CF 3 3.4 × 10 −8 [177]
PEALiFSI Block copolymer –CON −SO 2CF 3 5.84 × 10 −4 [178]
PEO‐PLSS Graft copolymer –SO 3 − 7.0 × 10 −8 [179]
LiBOPEG 600 Homopolymer –OP −(C 2O 4) 2 1.6 × 10 −6 [180]

Table 2.4 Composition and performance of ionic liquid electrolytes.

Year Electrolyte Ionic conductivity (S/cm) at RT References
2005 PVA–KOH 1.0 × 10 −2 [181]
2005 PEGDA–PVdF–EC–DMC–ethylmethyl carbonate (EMC)–LiPF 6 1.5 × 10 −3 [182]
2010 [PPyr 11TFSI] 28%LiTFSI 12%[Pyr 14TFSI] 60% 1.6 × 10 −6 [183]
2010 PEO 20LiTFSI 1[Pyr 1.2O1TFSI] 1.5 7.0 × 10 −5 [184]
2010 PEO 25–LiTf–IL 3.0 × 10 −4 [185]
2011 PEO 20LiTFSI 1[S 2.2.2TFSI] 1 5.0 × 10 −4 [186]
2012 PEO 20LiTFSI 1[Pip 13TFSI] 1.27 2.1 × 10 −4 [187]
2013 poly(methyl methacrylate–acrylonitrile–vinyl acetate) [P(MMA–AN–VAc)]‐ N ‐methyl‐ N ‐butyl pyrrolidinium bis(trifluoromethansulfonyl)imide 1.2 × 10 −3 [188]
2013 PEO 20LiTFSI 2[Pyr 14TFSI] 6 5.0 × 10 −4 [189]
2013 Chitosan–PEO–NH 4NO 3–EC 2.06 × 10 −3 [190]
2014 Poly(ε‐caprolactone)–NH 4SCN–EC 3.8 × 10 −5 [191]
2014 LiTFSI in P14TFS LiTFSI/P14TFSI/PEO 0.4 × 10 −3 [192]
2015 PEO 20LiTFSI 2[Pyr 1.2O 1TFSI] 4 2.5 × 10 −4 [193]
2017 PEO‐1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide 2.2 × 10 −4 [194]
2017 PEO‐(EMimFSI) 1.3 × 10 −3 [195]
2017 Oligoethylene glycol/ N ‐butyl imidazole 4.8 × 10 −4 [196]
2018 PVDF–HFP(EMITFSI) 0.76 × 10 −3 [197]
2018 PVDF–HFP–(SiO 2PPTFSI) 0.64 × 10 −3 [198]
2019 PIL:[PVEIm][TFSI] 5.92 × 10 −4(60 °C) [199]
2019 PEO–TBPHP 2.51 × 10 −3 [200]
2019 PEO–EMimFSI 3.6 × 10 −4 [201]

Finally, struggling to find suitable composite electrolytes with high conductivities during wide range of temperature always deserves more study. Commercial electrolytes require high ionic conductivity at room temperature, safety, and easy processing.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Organic Electronics for Electrochromic Materials and Devices»

Представляем Вашему вниманию похожие книги на «Organic Electronics for Electrochromic Materials and Devices» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Organic Electronics for Electrochromic Materials and Devices»

Обсуждение, отзывы о книге «Organic Electronics for Electrochromic Materials and Devices» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x