Hong Meng - Organic Electronics for Electrochromic Materials and Devices

Здесь есть возможность читать онлайн «Hong Meng - Organic Electronics for Electrochromic Materials and Devices» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Organic Electronics for Electrochromic Materials and Devices: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Organic Electronics for Electrochromic Materials and Devices»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore this comprehensive overview of organic electrochromic materials and devices from a leading voice in the industry  Organic Electronics for Electrochromic Materials and Devices The distinguished author places a strong focus on recent research results from universities and private firms from around the world and addresses the issues and challenges faced by those who apply organic electrochromic technology in the real world. With these devices quickly becoming the go-to display technology in the field of electronic information, this resource will quickly become indispensable to all who work or study in the field of optics. 
Readers will also benefit from the inclusion of: 
A thorough introduction to organic electrochromism, including its history and the mechanisms of electrochromic devices An exploration of polymer electrolytes for electrochromic applications, including their requirements and types A discussion of electrochromic small molecules, including the development of technology in conjugated polymer and violene-cyanine hybrids A treatment of Prussian blue and metallohexacyanates, including their backgrounds, technology development, crystal structures, synthesis, nanocomposites, and assembled electrochromic devices Perfect for materials scientists, polymer chemists, organic chemists, physical chemists, and inorganic chemists, 
 will also earn a place in the libraries of physicists and those who work in the optical industry who seek a one-stop reference that covers all aspects of organic electrochromic materials.

Organic Electronics for Electrochromic Materials and Devices — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Organic Electronics for Electrochromic Materials and Devices», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 212 An ECD structure containing a gel electrolyte composition combining - фото 30

Figure 2.12 An ECD structure containing a gel electrolyte composition combining lithium iodide LiI in 1‐butyl‐3‐methylimidazolium iodide (BMII) ionic liquid, triiodide I 3 −/I −redox mediator, and biodegradable gelatin.

Source: Reproduced with permission of Danine et al. [134].

Moreover, gelatin‐based electrolyte can be used in reflective ECD. Reflective ECD with glass/Cr/PB/electrolyte/CeO 2–TiO 2/ITO/glass configuration was reported to reveal a change from 8% to 15% at 450 nm for bleached and colored states.

Tihan et al. have used a new DNA–LiClO 4‐based solid PE in an ECD ( Figure 2.13) [135]. The novelty of the present research consists in the use of DNA membrane with different LiClO 4ratios in order to achieve new EC windows with good performances [135].

Figure 213 An electrochromic device containing DNAbased electrolyte Source - фото 31

Figure 2.13 An electrochromic device containing DNA‐based electrolyte.

Source: Tihan et al. [135].

2.4 Conclusion and Future Outlook

The field of PE is steadily broadening, as more and more various application are presented. Although lithium‐ion‐based electrolytes have been commercialized, such as applied in pull down window shades on Boeing 787 Dreamliner, smart glass in Ferrari 575 M Superamerica, and Flexity 2 light rail vehicles, some disadvantages such as poor safety, easy leakage, and unstable electrochemical performance limit its further development and wider applications. In this chapter, we have provided fundamental understanding of requirements for EC applications. In the meantime, recent progresses on polymer‐based electrolytes were summarized, including PEO/PVDF/PMMA gel polymer, self‐healing polymer, cross‐linking polymer, ceramic polymer, IL polymer, and gelatin PEs. The use of composite PEs has been identified as a promising method to improve the performance of electrolytes.

Table 2.1 Polymer hosts generally studied with the examples of gel polymer electrolyte complexes and their respective highest ionic conductivities.

Polymer electrolyte EC materials Ionic conductivity (S/cm) Electrochemical stability window (V) Optical modulation (%) Stability References
p (trimethylenecarbonate [TMC])/PEO Prussian Blue/PEDOT 1.33 × 10 −6 −1.5 ∼ 1 8 ∼ 30 Full color switch (>600 s) [138]
PEO/PVDF TiO 2 6.98 × 10 −6 90 [15]
PEO/LiClO 4 PEDOT:PSS 4.2 × 10 −4 −3.0 ∼ 3.0 22 No significant change [139]
P(VDF‐TrFE)/PEO PEDOT:PSS 6.79 × 10 −4 −1.0 ∼ 0.5 60 [140]
PEMA/poly (vinylidene fluoride) (PVdF)‐HFP WO 3//CeO 2–TiO 2 1.46 × 10 −6 −1.3 ∼ −0.8 81 [141]
PVdF‐HFP/silane‐functionalized ZrO 2 PANI:DBSA 1.78 × 10 −3 −4.0 ∼ 4.0 70 [142]
PVDF‐HFP/POEI‐ISF 4 Nanofibers 8.62 × 10 −3 0 ∼ 1.2 68.7 95.5% of Δ T [143]
PVDF‐ co ‐HFP/[EMI][TFSI] 1,1′‐bis(3‐fluoro‐4‐(trifluoromethyl)phenyl)‐4,4′‐bipyridinium bis(trifluoromethylsulfonyl)imide (TFMFPhV(TFSI) 2) 6.7 × 10 −3 −0.35 ∼ 0 ∼73 ∼14% decrease of Δ T after 24 h [144]
IL/PVDF‐HFP PEDOT:PSS 1.13 × 10 −3 −1.4 ∼ 1.4 ∼24 [54]
TMPD/HV(BF 4) 2/SN/PVDF‐HFP TMPD/HV(BF 4) 2/succinonitrile 1 × 10 −3 0 ∼ 0.9 60.1 74.7% of the original Δ T after 2000 cycles [145]
[Emim]BF 4/PMMA WO 3 2.9 × 10 −3(RT) −3.0 ∼ 1.5 88 [146]
Poly(ether ether ketone) membrane IR‐VEDs 6.8 × 10 −3 −1.0 ∼ 1.0 47 Good cycling stability [147]
PVDF‐HFP:PMMA/LiClO 4 2.83 × 10 −4 [148]
PMMA/SN‐PC WO 3//brain natriuretic peptide (PBNPs) 1.46 × 10 −3 −2.5 ∼ 2.0 52.4 44.5% after 2250 cycles [149]
Poly(ε‐caprolactone) (PCL)/SiO 2 PEDOT: PSS 5.2 × 10 −3 −4.0 ∼ 1.0 30.6 Good stability (100 cycles) [150]
Polyvinyl butyral (PVB)‐based GPEFs WO 3//Ni 1−xO 4.0 × 10 −5 −2.0 ∼ 2.0 65.8 Fading of 4.8% (16 h) [151]
PAN–DMF–LiTFSI WO 3//CeO 2–TiO 2 2.54 × 10 −4 −2.0 ∼ 1.0 29.1 [152]
PADA LiNiO//WO 3 1.33 × 10 −2(RT) −2.30 ∼ 2.30 61 58.4% after 50 cycles [153]
PVDF based P(PVK‐ co ‐EDOT) −0.9 ∼ 0.5 39.1 [154]
2‐APPG /PMDA/ICS WO 3film 1.01 × 10 −3 −3.5 ∼ 2.5 38.2 450 cycles [155]

Table 2.2 Examples of self‐healingand cross‐linking polymer electrolyte complexes and their respective highest ionic conductivities.

Electrolyte Ionic conductivity (S/cm) Electrochemical window (V) Application References
B‐PVA/KCl/graphene oxide (GO) 47.5 × 10 −3 0 ∼ 1.0 Flexible energy‐storage device [156]
SiO 2–UPy 8.0 × 10 −5 0 ∼ 6.0 Lithium‐ion batteries [157]
P(AA‐VIm‐VSN) 1.26 × 10 −4 −1.2 ∼ 0.3 Flexible electrochromic devices [158]
[P(PO/EM)]/lithium trifluoro(perfluoro‐tert‐butyloxyl)borate (LiTFPFB) 1.55 × 10 −4(70 °C) 3 ∼ 4.2 Lithium metal batteries [159]
Zn–metal‐organic gel (MOG) 0 ∼ 2.1 Flexible supercapacitor [160]
Poly(ethylene‐co‐acrylic lithium (fluoro sulfonyl)imide) (PEALiFSI) 5.84 × 10 −4 2.5 ∼ 4.0 Solid‐state Li‐ion batteries [161]
Li + ‐PEO −4 ∼ 4 Micro‐supercapacitors [162]

Although extensive researches have been devoted to the polymer‐based electrolytes, some basic issues still need to be addressed before commercialization. Above all, ionic conductivity is still on lower orders of magnitude than lithium‐based liquid electrolytes. Temperature is one of the most dominant parameters for determining the ionic conductivity. In particular, ionic conductivities in polymer‐based solid electrolytes drop dramatically at lower temperatures. Moreover, the mechanism of interfacial interaction between electrolyte and an EC layer is still unknown.

For now, the GPEs, typically based on PEO/PVDF/PMMA, have also been extensively explored, but they exhibit too low ionic conductivity at room temperature (≈10 −5S/cm) and poor resistance to oxidation at relatively high voltage. Poor mechanical performance limits the IL electrolyte from increasing the ionic conductivity. Safety issues cannot be neglected. Developing a self‐healing electrolyte that simultaneously exhibits excellent EC properties and good self‐healing behavior at low temperature is still an unmet challenge. The cross‐linked composite PE could effectively encapsulate the electrolyte solution without solvent leakage and exhibit favorable interfacial characteristics. However, low ionic conductivity at room temperature still need to be improved. The difficulty of ceramic PEs is how to construct good dispersion and enhance the interaction between filler and polymer, which restricts the further improvement of ionic conductivity. Gelatin‐based PEs have proved to be one of the alternative binders, but its rheological behavior in the tested conditions inhibited such material to be used at industry level.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Organic Electronics for Electrochromic Materials and Devices»

Представляем Вашему вниманию похожие книги на «Organic Electronics for Electrochromic Materials and Devices» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Organic Electronics for Electrochromic Materials and Devices»

Обсуждение, отзывы о книге «Organic Electronics for Electrochromic Materials and Devices» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x