Hong Meng - Organic Electronics for Electrochromic Materials and Devices

Здесь есть возможность читать онлайн «Hong Meng - Organic Electronics for Electrochromic Materials and Devices» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Organic Electronics for Electrochromic Materials and Devices: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Organic Electronics for Electrochromic Materials and Devices»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore this comprehensive overview of organic electrochromic materials and devices from a leading voice in the industry  Organic Electronics for Electrochromic Materials and Devices The distinguished author places a strong focus on recent research results from universities and private firms from around the world and addresses the issues and challenges faced by those who apply organic electrochromic technology in the real world. With these devices quickly becoming the go-to display technology in the field of electronic information, this resource will quickly become indispensable to all who work or study in the field of optics. 
Readers will also benefit from the inclusion of: 
A thorough introduction to organic electrochromism, including its history and the mechanisms of electrochromic devices An exploration of polymer electrolytes for electrochromic applications, including their requirements and types A discussion of electrochromic small molecules, including the development of technology in conjugated polymer and violene-cyanine hybrids A treatment of Prussian blue and metallohexacyanates, including their backgrounds, technology development, crystal structures, synthesis, nanocomposites, and assembled electrochromic devices Perfect for materials scientists, polymer chemists, organic chemists, physical chemists, and inorganic chemists, 
 will also earn a place in the libraries of physicists and those who work in the optical industry who seek a one-stop reference that covers all aspects of organic electrochromic materials.

Organic Electronics for Electrochromic Materials and Devices — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Organic Electronics for Electrochromic Materials and Devices», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

21 21 Li, W., Ning, J., Yin, Y. et al. (2018). Thieno[3,2‐b]thiophene‐based conjugated copolymers for solution‐processable neutral black electrochromism. Polymer Chemistry 9 (47): 5608–5616.

22 22 Beaujuge, P.M. and Reynolds, J.R. (2010). Color control in π‐conjugated organic polymers for use in electrochromic devices. Chemical Reviews 110 (1): 268–320.

23 23 Jiang, M., Sun, Y., Ning, J. et al. (2020). Diphenyl sulfone based multicolored cathodically coloring electrochromic materials with high contrast. Organic Electronics 83: 105741.

24 24 Fred Schubert, E., Chapter 16. Human Eye Sensitivity and Photometric Quantities in Light‐Emitting Diodes, 2e. Cambridge University Press.

25 25 Kraft, A. (2018). Electrochromism: a fascinating branch of electrochemistry. ChemTexts 5 (1): 1–18.

26 26 Padilla, J., Seshadri, V., Filloramo, J. et al. (2007). High contrast solid‐state electrochromic devices from substituted 3,4‐propylenedioxythiophenes using the dual conjugated polymer approach. Synthetic Metals 157 (6–7): 261–268.

27 27 Hsiao, S.‐H. and Lin, S.‐W. (2016). Electrochemical synthesis of electrochromic polycarbazole films from N‐phenyl‐3,6‐bis(N‐carbazolyl)carbazoles. Polymer Chemistry 7 (1): 198–211.

28 28 Hassab, S., Shen, D.E., Österholm, A.M. et al. (2018). A new standard method to calculate electrochromic switching time. Solar Energy Materials and Solar Cells 185: 54–60. https://doi.org/10.1016/j.solmat.2018.04.031.

29 29 Fabretto, M., Vaithianathan, T., Hall, C. et al. (2008). Faradaic charge corrected colouration efficiency measurements for electrochromic devices. Electrochimica Acta 53 (5): 2250–2257.

30 30 Wei, Y., Zhou, J., Zheng, J., and Xu, C. (2015). Improved stability of electrochromic devices using Ti‐doped V2O5 film. Electrochimica Acta 166: 277–284.

31 31 Lampert, C.M., Agrawal, A., Baertlien, C., and Nagai, J. (1999). Durability evaluation of electrochromic devices – an industry perspective. Solar Energy Materials and Solar Cells 56 (3): 449–463.

2 Advances in Polymer Electrolytes for Electrochromic Applications

2.1 Introduction

The ionic conduction medium between the electrodes and electrochromic (EC) materials is an electrolyte, which is one of the most essential active components in electrochromic device (ECD). Electrolyte provides an indispensable role as the prime ionic conduction medium between the electrodes while preventing electron conduction between the two electrodes during EC operation. The important electrolyte properties greatly affecting the EC performance are the electrolyte ionic conductivity, ion dissociation, transport rate of ion through bulk and interface, and thermal stability [1]. Electrolytes were initially reported in the early 1970s, including ceramic, glass, crystalline, and polymer electrolytes (PEs). PE was first introduced by Fenton et al. in 1973 [2] and widely applied since 1980s [3]. In the past decades, PEs attracted much attention from all over the world's researchers due to their promising applications in electrochemical storage/conversion devices.

In general, electrolytes can be classified into PEs, liquid electrolytes, ceramic electrolytes, and solid inorganic electrolytes [4–6]. Briefly, PE is a membrane composed of a dissolution of salts in a polymer matrix with high molecular weight [7]. PE is widely applied in electrochemical devices such as solid‐state batteries and rechargeable batteries, ECDs, supercapacitors, fuel cells, dye‐sensitized solar cells, and EC windows. Technologically, PEs evolved from polymer, liquid ionic conductor and solid‐state ionic conductor. PEs can be prepared by dissolving metal salts in polar polymer hosts, which could be used to replace the liquid ionic solution. Liquid electrolytes possessing high ionic conductivity have several inevitable drawbacks such as the possibility of electrolyte leakage, low chemical stability, hydrostatic pressure considerations, and difficulty in assured sealing and are unsafe for practical applications especially in scaling‐up processes [8]. Comparing with liquid electrolytes, PE has several prominent advantages, such as high ionic conductivity, safety, flexibility, wide electrochemical windows, and so on [9, 10].

2.2 Requirements of Polymer Electrolytes in Electrochromic Applications

Factors that lead to the use of PE in an EC devices are as follows ( Figure 2.1).

High optical transparencyHigh optical transparent PEs are highly desirable for EC applications. High transmittance enhances the transparency of an EC device in the bleached state. Electrolytes cannot affect the optical shifts during colored and bleached states.

Flexible and mechanically stretchablePE owing to flexible and mechanically stretchable advantages can be better applied in ECDs, especially in flexible and stretchable devices. The polymeric matrix is of vital importance. The PE requires to keep mechanical stability during bending and stretching states.

Multifunctional separatorThere is a direct contact between the two electrodes without any separator, which will lead to a short circuit. PE can act as a separator layer in an EC device, making these devices light and compact without the need for additional separators. Moreover, PEs demand intimate binding effect, making favorable electrical contact with the electrodes and good adherence to EC layers.

Wide range of working temperaturePEs inherently exhibit the ability to operate over a wide range of temperature as compared to the other counterparts.

Cation coordination abilityPolymers in electrolytes with benign cation coordination ability can better make for coordination bonding interactions with the metal cations.

Wide operation potential windowStable electrochemical window is the range of working potential in an EC device without breakdown of electrolyte itself. The maximum potential is determined by the potential of the oxidation reaction. Meanwhile, the minimum potential is determined by the potential of the reduction reaction. To ensure the long‐time and cycling stability of the ECD, the working potential window of a device should be considered in the electrochemical operating range of the electrolyte.

Thermal, photo, chemical, and electrochemical stabilityAn ideal PE should possess good thermal and photo stability. During electro chromic processes, the device may release heat, which may result in degradation of the EC devices. Similarly, an ideal electrolyte with photo stability prevents device from being destroyed via prolonged exposure to air. It is necessary to keep good electrochemical stability in the voltage range for ECDs. Undesired interaction effects between the EC layer and electrolyte should not exist in the ECD during EC processes so that devices can keep reversible and long lifetime performance for practical application. This chemical stability must be ensured both during the deposition and during the cycling processes. Currently, small molecule EC materials‐based ECDs have appeared in lots of researches. However, this kind of ECD mostly can be operated under higher potential. Therefore, PEs with wide potential window are demanded.

High ionic conductivity (>10−4 S/cm) with low electronic conductivityPEs should be a good ionic conductor and electronically insulating (σe < 10−12 S/cm) so that ion transport could be facilitated to minimize self‐discharge. In EC process, the essence of color change is the transfer of ions into and out of an EC film. The electrolyte should also maintain its high ionic conductivity even after thousands of cycles. The flexibility of polymer matrix chains in the amorphous phase allows ions to be transported frequently. This easy transport of ions is hindered in the crystalline phase, where the material is densely packed and there is not enough space to allow rapid transport of ions [11]. The ion transference number is important in the characterization of PEs. A large transference number can reduce concentration polarization of electrolytes during charge–discharge steps [12].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Organic Electronics for Electrochromic Materials and Devices»

Представляем Вашему вниманию похожие книги на «Organic Electronics for Electrochromic Materials and Devices» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Organic Electronics for Electrochromic Materials and Devices»

Обсуждение, отзывы о книге «Organic Electronics for Electrochromic Materials and Devices» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x