Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 121

Riemann sums can be expressed as Cauchy 8sums Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 122where Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 123or Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 124. In fact the Riemann‐complete integral can be defined in terms of suitably chosen finite samples Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 125of the elements in the domain of integration, without resort to measurable functions or measurable subsets—or even without explicit mention of subintervals of the domain of integration.

To define ‐complete integration in “rectangular” or Cartesian product domains such as картинка 126above—no matter how complex their construction—the only requirements are:

Exact specification of the elements or points of the domain, and

A structuring of finite samples of points consistent with Axioms DS1 to DS8 of chapter 4 of [MTRV].

In other words integration requires a domain картинка 127and a process of selecting samples of points or elements of картинка 128—without reference to measurable subsets, or even to intervals of картинка 129at the most basic level.

This skeletal structuring of finite samples of points of the domain provides us with a system of integration (the ‐complete integral) with all the useful properties—limit theorems, Fubini's theorem, a theory of measure, and so on. More than that, it provides criteria for non‐absolute convergence (theorems 62, картинка 130, 964, and 65 of [MTRV]) wwynman integrals.

Notes

1 2 The attachment “‐complete” was introduced by R. Henstock in [70], the first book‐length exposition of this kind of integration theory. A few of copies of this edition were printed in 1962. A replacement edition with different page size was printed and distributed in 1963. Up to that time J. Kurzweil and R. Henstock had worked independently on this subject from around the mid‐1950s, without knowledge of each other.

2 3 Henstock's introduction of the “‐complete” appendage is suggestive of “enhanced integrability of limits” rather than “completeness of a domain with respect to a norm”.

3 4 As part of the College Prize awarded by St. John's College, Cambridge, on the results of the 1943 Mathematics Tripos Part 2 examination, Henstock received a copy of Dienes’ book [23], which includes close analysis of convergence‐divergence issues. In a late, unfinished work [78], c. 1992–1993, Henstock used some notable ideas from Dienes’ book.

4 5 The final chapter of Henstock's 1962‐1963 book [70] has the title Integration in Statistics. It deals mostly with tests of significance, and touches on some questions of probability theory using the Riemann‐complete method. The 1955 paper is concerned strictly with the nature of integration. But ancillary matters such as probability—and, indeed, differentiation—featured consistently in Henstock's subsequent work.

5 6 In the terminology of [MTRV] and this book, Feynman's method consists of substituting cylinder function approximations in the action functional.

6 7 This simplification represents each of the variables , , and as one‐dimensional. The electric field component is essentially vectorial, and one‐dimensional is contrary to the physical nature of the system. A physically more accurate version can be arrived at by a careful reading of chapter 9 of [FH]. And even though it is a bit more complicated, it is not too difficult to adapt the mathematical theory presented in this book.

7 8 A Cauchy sum has . But allowing to be either of or makes a connection with the Riemann sums of ‐complete integration.

8 9 Theorem 63 (page 175 of [MTRV]) is false. See Section 11.2 below; and also [ website ].

Part I Stochastic Calculus

Chapter 1 Stochastic Integration

The idea or purpose of stochastic integration is to define a random variable where is a random or unpredictable quantity depending in a particula - фото 131

where is a random or unpredictable quantity depending in a particular manner - фото 132

where картинка 133is a random or unpredictable quantity, depending in a particular manner on unpredictable entities and and where are stochastic processes and - фото 134and and where are stochastic processes and depends on time t - фото 135; and where

are stochastic processes and depends on time t In textbooks the integrand is - фото 136

are stochastic processes and картинка 137depends on time t . In textbooks, the integrand is usually presented as картинка 138, but картинка 139is used here in order to emphasise that the integrand is intended to be random.

The integrand Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 140(or, when appropriate, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 141) is to be regarded as a measurable function—as is Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 142—with respect to a probability space Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 143.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x