Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Here, use of the symbol картинка 171for the integrand (instead of the usual картинка 172) indicates that while the integrand is a random variable dependent on s , it does not necessarily depend on the integrator random variable Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 173. If, in fact, there is such dependence, then an appropriate notation 2 for the integrand is Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 174.

The notation and terminology of ordinary integration is used in I1, I2, I3, I4, and they provide a certain “feel” for what is going on. But the various elements of the system are clearly different from ordinary integration. Can we get some more precise idea of what is really going on?

The “integration‐like” construction in I1suggests that the domain of integration is Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 175, and that the integrand takes values in a class of functions (—random variables; that is, functions which are measurable with respect to some probability space, or spaces).

How does this compare with more familiar integration scenarios? Basic integration (“ Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 176”) has two elements: firstly, a domain of integration containing values of the integration variable s , and secondly, an integrand function картинка 177which depends on the values s in the domain of integration. The more familiar integrand functions have values which are real or complex numbers картинка 178; and which are deterministic (that is, “definite”, not approximate or estimated).

The construction in I1, I2, I3indicates an integration domain картинка 179or картинка 180. (There is nothing surprising in that.) But in I1, I2, I3the integrand values are not real or complex numbers, but random variables—which may be a bit surprising.

But it is not unprecedented. For instance, the Bochner integration process in mathematical analysis deals with integrands whose values are functions, not numbers.

The construction and definition of the Bochner integral [105] is similar in some respects to the classical Itô integral. What is the end result of the construction in I1, I2, I3?

In general, the integral of a function f gives a kind of average or aggregation of all the possible values of f . So if each value of the integrand картинка 181is a random variable, the integral of f should itself be a random variable—that is, a function which is measurable with respect to an underlying probability measure space.

If the notation is valid or justifiable for the stochastic integral it suggests that the Itô - фото 182is valid or justifiable for the stochastic integral, it suggests that the Itô integral construction derives a single random variable or from many jointly varying random variab - фото 183derives a single random variable картинка 184(or картинка 185) from many jointly varying random variables, such as картинка 186, as картинка 187varies between the values 0 and t . This is reminiscent of Norbert Wiener's construction in [169], which is in some sense a mathematical replication in one dimension of Brownian motion; even though the latter is essentially an infinite‐dimensional phenomenon with infinitely many variables. Without losing any essential information, a situation involving infinitely many variables is converted to a scenario involving only one variable. 3

The proof of the Itô isometry relation (see I1) indicates that, as a stochastic process, картинка 188must be independent of картинка 189. Otherwise the construction I1, I2, I3would seem to be inadequate as it stands, whenever the process Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 190is replaced by a process Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 191.

In I3the integrand does not have step function form and on the face of it indicates dependence - фото 192does not have step function form; and, on the face of it, indicates dependence of or on random variables - фото 193indicates dependence of картинка 194(or картинка 195) on random variables Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 196and Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 197for every s , Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 198. If the integrand were Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 199(which, in general, it is not), with joint random variability for Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 200, and if Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 201is Brownian motion, then the joint probability space for the processes Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 202and Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 203is given by the Wiener probability measure and its associated multi‐dimensional measure space. (The latter are described in Chapter 5below.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x