Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Returning to I1, the Itô integral of step function is defined as where the - фото 204of step function is defined as where the are random variable values of - фото 205is defined as

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 206

where the Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 207are random variable values of Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 208. It is perfectly valid to combine finite numbers of random variables in this way, in order to produce, as outcome, a single random variable (—which may be a joint random variable depending on many underlying random variables).

This part of the formulation of the integral of a step function in I1corresponds to the integral of a step function in basic integration, and does not require any passage to a limit of random variables.

Now suppose each Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 209is a fixed real number Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 210; so, for Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 211, Accordingly in I1 can be regarded as a degenerate random variable with - фото 212. (Accordingly, in I1, картинка 213can be regarded as a “degenerate” random variable, with atomic probability value.) Suppose the integrator is the real‐valued ds instead of the random variable‐valued Then 4 Formally at least this looks like the definition in I1of - фото 214. Then 4

Formally at least this looks like the definition in I1of when - фото 215

Formally, at least, this looks like the definition in I1of Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 216when Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 217is a step function. The factor Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 218equals Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 219for each j . This emerges naturally from the mathematical meaning of the length or distance variable s , and from the mathematical meaning of картинка 220.

Can this be replicated in I1when картинка 221is a step function, or when each is a fixed real number Is it the case that With each - фото 222is a fixed real number Is it the case that With each this would imply 11 - фото 223? Is it the case that

With each this would imply 11 If this is unproblem - фото 224

With each this would imply 11 If this is unproblematical it should be possible to - фото 225, this would imply

(1.1) Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 226

If this is unproblematical, it should be possible to deduce it from one or other of the various mathematical definitions of Brownian motion Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 227, along with some mathematical definition of the integral in this context But it appears that there is no such understanding of So as - фото 228in this context.

But it appears that there is no such understanding of So as in I1 it seems that this formulation is to be regarded as a basic - фото 229. So, as in I1, it seems that this formulation is to be regarded as a basic postulate or axiom of stochastic integration.

Returning to the definition of the classical Itô integral, I2has the following condition on the expected value of the integral of the process Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 230:

The idea here is that if is the random entity obtained by carrying out some - фото 231

The idea here is that, if Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 232is the random entity obtained by carrying out some form of weighted aggregation—denoted by Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 233—of all the individual random variables Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 234( Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 235), then

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x