Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
In that case what is the relation between and For instance is it the c - фото 309

In that case, what is the relation between картинка 310and For instance is it the case that for each real number a the probabilities - фото 311? For instance, is it the case that, for each real number a , the probabilities of corresponding measurable sets are equal (such as The framework outlined above does not include the important case - фото 312):

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 313

The framework outlined above does not include the important case Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 314, where Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 315( Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 316) is Brownian motion. Broadly speaking, means that the random variables represented by finite sums converge as - фото 317means that the random variables represented by finite sums

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 318

converge as Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 319tend to zero, each j . In fact the convergence is weak, not point‐wise, with

and the weak limit t is a fixed real number which can be regarded as a - фото 320

and the weak limit t is a fixed real number which can be regarded as a degenerate random variable. This result is basic to the construction I1, I2, I3, I4.

A closer reading of source material may provide answers and/or corrections to some or all of the above comments and queries. Any misinterpretation, confusion, and errors may be dispelled by closer examination of the underlying ideas.

Aside from these issues, and looking beyond the classical mathematical theory, the general idea of stochastic integral is, in intuitive terms, a persuasive, natural and practical way of thinking about the underlying reality.

An alternative (and hopefully more understandable) mathematical way of representing this reality is presented in subsequent chapters of this book.

Example 2

In order to focus on the underlying ideas, here is a simple illustration. Suppose, at different times t , картинка 321(or картинка 322) is a random variable, with sample space картинка 323. For simplicity suppose, for each t , картинка 324has the same sample space картинка 325and the same probability distribution. Suppose further that Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 326has only a finite number m of possible values Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 327, each equally likely. Then we can take

and probability For - фото 328

and probability For where - фото 329. For where is the number of elements in A Then for each t - фото 330,

where is the number of elements in A Then for each t - фото 331

where картинка 332is the number of elements in A . Then, for each t , картинка 333is a картинка 334‐measurable function and thus a random variable. (We may also suppose, if it is convenient for us, that for any t , Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 335, the random variables Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 336are independent.)

Now suppose that, for Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 337, картинка 338is another indeterminate or unpredictable quantity; and that, for given t , the possible values of Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 339depend in some deterministic way on the corresponding values of Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 340, so

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x