Nikolaos Limnios - Queueing Theory 2

Здесь есть возможность читать онлайн «Nikolaos Limnios - Queueing Theory 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Queueing Theory 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Queueing Theory 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The aim of this book is to reflect the current cutting-edge thinking and established practices in the investigation of queueing systems and networks. This book also considers techniques for the control of information in queueing systems and their impact on strategic customer behavior, social welfare and the revenue of monopolists. In addition, applications of maximum entropy methods of inference for the analysis of a stable M/G/1 queue with heavy tails, and inventory models with positive service time – including perishable items and stock supplied using various algorithmic control policies ((s; S); (r;Q), etc.).

Queueing Theory 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Queueing Theory 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
then Therefore the traffic rate for low priority customers has the form - фото 215

then Therefore the traffic rate for low priority customers has the form From - фото 216Therefore, the traffic rate for low priority customers has the form

Queueing Theory 2 - изображение 217

From corollary 1.1 we obtain corollary 1.3.

COROLLARY 1.3.– Assume that X 2is a strongly regenerative flow, B 0satisfies [1.14]and Queueing Theory 2 - изображение 218Then Queueing Theory 2 - изображение 219If additionally Bi satisfies [1.14]and ρ 1< 1, then Q 1( t ) is a stable process.

The first statement follows from corollary 1.1 since картинка 220is a strongly regenerative process. To prove the second statement, we note that Q 2is a regenerative process and its stochastic boundedness means stability.

1.9. Queueing system with simultaneous service of a customer by a random number of servers

Here, we consider a system S assuming that the n th customer requires service from ζn server simultaneously картинка 221The customer arrived in an empty queue begins service immediately if the number of available servers is more or equal ζn . Otherwise the customer becomes the first in a queue and the service begins when the required number of servers becomes available. A customer who arrives in an nonempty queue takes the last place in the queue. When service begins, each server’s completion time is independent of all other servers and has an exponential distribution with rate μ . The sequence Queueing Theory 2 - изображение 222consists of iid random variables and Queueing Theory 2 - изображение 223 Queueing Theory 2 - изображение 224.

Queueing systems with simultaneous service have been studied in a number of works (Rumyantsev and Morozov 2017; and references therein). The stability conditions in an explicit form have been obtained for systems with a Poisson input flow and independent exponentially distributed service times by (Gillent and Latouche 1983). The main goal of this section is an extension of the stability condition to the model with a regenerative input flow X based on theorems 1.1 and 1.2. Thus, we consider the system S described in section 1.2with is a sequence of independent exponentially distributed random variables not - фото 225is a sequence of independent exponentially distributed random variables not depending on ζn . Let S 0be an auxiliary system defined in section 1.3. Instead of the process Y we consider the auxiliary flow Z that is the number of service completions by all m servers up to time t in the auxiliary system S 0. Denote by U ( t ) the number of occupied servers at time t in the system S 0. Then U is a Markov chain and Z is a doubly stochastic Poisson process (Grandell 1976) with a random intensity Queueing Theory 2 - изображение 226We note that the process U hits the state { m } from any state j = 1, 2 ,..., m with a positive probability. It means that all states attainable from the state { m } constitute the finite class K of communicating states. Therefore, there are limits

Let and We have the system of equations for - фото 227

Let and We have the system of equations for 118 - фото 228and We have the system of equations for 118 whe - фото 229

We have the system of equations for 118 where We may easily verify that the solution of - фото 230

[1.18] where We may easily verify that the solution of 118has the form - фото 231

where We may easily verify that the solution of 118has the form Since - фото 232We may easily verify that the solution of [1.18]has the form

Since we get and the traffic rate for the system - фото 233

Since

we get and the traffic rate for the system S 119 - фото 234

we get

and the traffic rate for the system S 119 Let us note that this formula - фото 235

and the traffic rate for the system S

[1.19] Let us note that this formula is the same as obtained by Gillent and Latouche - фото 236

Let us note that this formula is the same as obtained by (Gillent and Latouche 1983) for queueing systems with a Poisson input flow. To employ theorems 1.1 and 1.2, we have to verify conditions 1.1, 1.3, 1.4 and 1.5. First of all we note that Z is a strongly regenerative flow. As points of regeneration, we may take the sequential hitting times Queueing Theory 2 - изображение 237into the fixed state картинка 238(We take if Then is the sojourn time in the state j and - фото 239if Then is the sojourn time in the state j and is the return time to thi - фото 240Then is the sojourn time in the state j and is the return time to this state after - фото 241is the sojourn time in the state j and картинка 242is the return time to this state after exit from it for U(t) . The random variables картинка 243and Queueing Theory 2 - изображение 244are independent and Queueing Theory 2 - изображение 245has an exponential distribution. Moreover, Queueing Theory 2 - изображение 246therefore, condition 1.1 holds. Let q ( t ) be the total number of servers that are already busy or will be busy by service of the Q ( t ) customers, which are present at the system S at time t . Then q ( t ) as well as Q ( t ) is a regenerative process with a sequence Queueing Theory 2 - изображение 247of points of regeneration that is a subsequence of Queueing Theory 2 - изображение 248such that Queueing Theory 2 - изображение 249Let us recall that картинка 250is a sequence of points of regeneration for X . Therefore, because of theorem 1 from (Afanasyeva and Tkachenko 2014), condition 1.4 is fulfilled. Now for any fix картинка 251we define the common points of regeneration for the input flow X and auxiliary flow Z by the relation Let 120 - фото 252for the input flow X and auxiliary flow Z by the relation

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Queueing Theory 2»

Представляем Вашему вниманию похожие книги на «Queueing Theory 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Queueing Theory 2»

Обсуждение, отзывы о книге «Queueing Theory 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x