Eleftheria Papadimitriou - Statistical Methods and Modeling of Seismogenesis

Здесь есть возможность читать онлайн «Eleftheria Papadimitriou - Statistical Methods and Modeling of Seismogenesis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Statistical Methods and Modeling of Seismogenesis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Statistical Methods and Modeling of Seismogenesis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The study of earthquakes is a multidisciplinary field, an amalgam of geodynamics, mathematics, engineering and more. The overriding commonality between them all is the presence of natural randomness. Stochastic studies (probability, stochastic processes and statistics) can be of different types, for example, the black box approach (one state), the white box approach (multi-state), the simulation of different aspects, and so on. This book has the advantage of bringing together a group of international authors, known for their earthquake-specific approaches, to cover a wide array of these myriad aspects. A variety of topics are presented, including statistical nonparametric and parametric methods, a multi-state system approach, earthquake simulators, post-seismic activity models, time series Markov models with regression, scaling properties and multifractal approaches, selfcorrecting models, the linked stress release model, Markovian arrival models, Poisson-based detection techniques, change point detection techniques on seismicity models, and, finally, semi-Markov models for earthquake forecasting.

Statistical Methods and Modeling of Seismogenesis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Statistical Methods and Modeling of Seismogenesis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Figure 2.18(b) shows the standard deviation (again in a normalized scale) of stress on the cells of each segment. Figure 2.18(c) shows the ratio between the values of the average stress and its standard deviation. This parameter increases always and only before a strong earthquake. Assuming that the trend shown in Figure 2.17before large earthquakes (i.e. stress becomes higher and more uniform on a relevant patch of the fault system) is a phenomenon that happens in reality, it could be regarded as a promising tool for forecasting strong events. Unfortunately, it is not feasible to map the stress on the fault surface in the real environment with the necessary resolution. However, some seismicity patterns observable by means of modern high-quality seismic networks, such as spatio-temporal changes of b-value, could be associated with stress variation in the crust and applied in an operational forecasting system (Montuori et al . 2016; Gulia et al . 2016; Gulia and Wiemer 2019).

Figure 217 Stress time history on the Nankai seismogenic structure for the - фото 114

Figure 2.17. Stress time history on the Nankai seismogenic structure for the first 76 years. For a color version of this figure, see www.iste.co.uk/limnios/statistical.zip

2.5. Appendix 1: Relations among source parameters adopted in the simulation model

Figure 218 a The time history in a normalized scale of the average stress - фото 115

Figure 2.18. (a) The time history (in a normalized scale) of the average stress computed on all the cells of each segment from A to E in a time span of 2,000 years. Vertical bars indicate the occurrence time of earthquakes whose ruptures significantly modified the stress of more than one segment. The increase in stress is mostly due to tectonic loading, but is also due to stress transfer from the cells of a segment to the others. The average stress drops at the time of each earthquake according to the size of the rupture on the specific segment participating in the earthquake. (b) The same as in the top panel for the standard deviation of stress on the cells of each segment. The standard deviation decreases (i.e. the stress becomes more uniform) when the occurrence time of earthquakes approaches. (c) Ratio between the values of the average stress and its standard deviation. This parameter increases always and only before a strong earthquake, as a possible precursor of large size events. For a color version of this figure, see www.iste.co.uk/limnios/statistical.zip

This appendix provides the theoretical framework of the model adopted in the simulation algorithms described in section 2.3. Because the magnitudes of the earthquakes of the synthetic catalog generated by the algorithm are obtained from their seismic moments, and the number of these earthquakes per unit time must fit the constraint of the slip rate assigned to any fault segment of the model, it is necessary to adopt relationships between the magnitude and both the rupture area and the average slip of each event.

The scalar seismic moment of an earthquake is defined as:

[2.5] Statistical Methods and Modeling of Seismogenesis - изображение 116

where μ is the shear modulus of the elastic medium, картинка 117is the average slip on the fault and S is the rupture area, that for a rectangular shape is the product of the length L by the width W. From the theory of elasticity, the energy released by a fracture through elastic waves is given by:

[2.6] Statistical Methods and Modeling of Seismogenesis - изображение 118

where Δ σ is the static stress drop of the earthquake. From [2.5]and [2.6], we obtain:

[2.7] Statistical Methods and Modeling of Seismogenesis - изображение 119

Two widely used formulas link the seismic moment and the seismic energy of an earthquake with magnitude:

[2.8] 29 Substituting 28and 29into 27 we obtain 210 - фото 120

[2.9] Substituting 28and 29into 27 we obtain 210 and adopting a value - фото 121

Substituting [2.8]and [2.9]into [2.7], we obtain:

[2.10] Statistical Methods and Modeling of Seismogenesis - изображение 122

and adopting a value μ = 3.3 • 10 10Pa for rocks in the Earth’s crust:

[2.11] Statistical Methods and Modeling of Seismogenesis - изображение 123

For a rectangular rupture, in analogy with the theoretical formulas introduced for a circular fault by Keilis Borok (1959), the following relations were proposed by Console and Catalli (2006):

[2.12] 213 214 where x and y are the co - фото 124

[2.13] 214 where x and y are the coordinates on the fault plane counted from the - фото 125

[2.14] where x and y are the coordinates on the fault plane counted from the center - фото 126

where x and y are the coordinates on the fault plane, counted from the center of the rectangular source, D(x, y) is the displacement on the point x and y coordinates and D maxis the displacement on the fault center. From the definition of seismic moment [2.5]:

[2.15] Combining 25 29 214and 215 we have 216 and 217 - фото 127

Combining [2.5], [2.9], [2.14]and [2.15], we have:

[2.16] and 217 Dividing equation 214by the average interevent time we obtain - фото 128

and

[2.17] Statistical Methods and Modeling of Seismogenesis - изображение 129

Dividing equation [2.14]by the average interevent time, we obtain a relation between the stress rate and the slip rate:

[2.18] Statistical Methods and Modeling of Seismogenesis - изображение 130

2.6. Appendix 2: Outline of the simulation program

Purpose: creating a synthetic earthquake catalog in a seismogenic region described by a rectangular fault, divided into segments of different slip rate. The fault geometry is described by the total along-strike length of the fault system (L), the length and the tectonic slip rate of each segment, a uniform down-dip width (W) and the cell length (a) and width (b). Assuming a stress drop Δ σ = 3.3 10 6Pa, the slip, seismic moment and magnitude of an earthquake on a single cell is computed (see the appendix in section 2.5). The following parameters are used by the algorithm:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Statistical Methods and Modeling of Seismogenesis»

Представляем Вашему вниманию похожие книги на «Statistical Methods and Modeling of Seismogenesis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Statistical Methods and Modeling of Seismogenesis»

Обсуждение, отзывы о книге «Statistical Methods and Modeling of Seismogenesis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x