Eleftheria Papadimitriou - Statistical Methods and Modeling of Seismogenesis

Здесь есть возможность читать онлайн «Eleftheria Papadimitriou - Statistical Methods and Modeling of Seismogenesis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Statistical Methods and Modeling of Seismogenesis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Statistical Methods and Modeling of Seismogenesis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The study of earthquakes is a multidisciplinary field, an amalgam of geodynamics, mathematics, engineering and more. The overriding commonality between them all is the presence of natural randomness. Stochastic studies (probability, stochastic processes and statistics) can be of different types, for example, the black box approach (one state), the white box approach (multi-state), the simulation of different aspects, and so on. This book has the advantage of bringing together a group of international authors, known for their earthquake-specific approaches, to cover a wide array of these myriad aspects. A variety of topics are presented, including statistical nonparametric and parametric methods, a multi-state system approach, earthquake simulators, post-seismic activity models, time series Markov models with regression, scaling properties and multifractal approaches, selfcorrecting models, the linked stress release model, Markovian arrival models, Poisson-based detection techniques, change point detection techniques on seismicity models, and, finally, semi-Markov models for earthquake forecasting.

Statistical Methods and Modeling of Seismogenesis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Statistical Methods and Modeling of Seismogenesis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The j -th jackknife sample, jn , is the n − 1 element sample { M 1, M 2,.., M j−1, M j+1, .., M n} that is the initial sample from which the j -th element has been removed. Hence, we can have, at most, n jackknife samples.

The first-order smoothed bootstrap samples are obtained in the same way as previously ( equation [1.25]). The k -th smoothed bootstrap sample, (k), is composed of:

[1.33] Statistical Methods and Modeling of Seismogenesis - изображение 70

where Statistical Methods and Modeling of Seismogenesis - изображение 71is the standard bootstrap sample obtained by n times uniform selection, with replacement from the original data { M i}, i = 1,.., n , and εi are the standard normal random numbers. We can have any number of the first-order bootstrap samples.

The second-order smoothed bootstrap samples are based on the first-order bootstrap sample, say (k), and the CDF kernel estimate from (k), say Statistical Methods and Modeling of Seismogenesis - изображение 72built on the bandwidth from [1.10], h (k), and weights Statistical Methods and Modeling of Seismogenesis - изображение 73from [1.7]. A j -th second-order smoothed bootstrap sample, (k,j), is composed of:

[1.34] Statistical Methods and Modeling of Seismogenesis - изображение 74

where Statistical Methods and Modeling of Seismogenesis - изображение 75is the standard bootstrap sample from (k).

The IBCa method can be presented in the following steps:

– Step 1. Generate n jackknife samples, estimate kernel CDF-s from the jackknife samples, and evaluate the accelerating constant:

[1.35] Statistical Methods and Modeling of Seismogenesis - изображение 76

where Statistical Methods and Modeling of Seismogenesis - изображение 77stands for the arithmetic mean of Statistical Methods and Modeling of Seismogenesis - изображение 78

– Step 2. Generate B smoothed bootstrap samples of the first order, ℳ(k), k = 1,.., B, and estimate the kernel CDF-s from these samples,

– Step 3. From every first-order bootstrap sample generate BB smoothed bootstrap samples of the second order, ℳ(k,j), k = 1,.., B, j = 1,.., BB, and estimate the kernel CDF-s from these samples,

– Step 4. For every first-order bootstrap sample, ℳ(k), and its offspring second-order samples, ℳ(k,j), j = 1,.., BB, estimate the linked bias-correction parameter:

[1.36] where Φ 1 is the inverse function of the standard normal CDF Calculate - фото 79

where Φ −1( ) is the inverse function of the standard normal CDF. Calculate the bias-correction parameter as a mean value of the linked bias-correction parameters:

[1.37] Statistical Methods and Modeling of Seismogenesis - изображение 80

– Step 5. Calculate the orders of percentiles, α1 and α2:

[1.38] where Φ is the standard normal CDF and zα and z 1αare percentiles of the - фото 81

where Φ( ) is the standard normal CDF, and and z 1-αare percentiles of the standard normal distribution.

– Step 6. Sort in ascending order, The estimate of the confidence interval of length 1 − 2α for magnitude CDF is:

[1.39] Statistical Methods and Modeling of Seismogenesis - изображение 82

Orlecka-Sikora (2008) also provided a method to evaluate the optimal number of the first-order bootstrap samples, B . In general, B should be large, amounting tens of thousands for the initial sample of hundreds of elements. The reasonable number of the second-order samples is a few hundred for every first-order bootstrap sample. Hence, we have to generate tens of millions samples to get the confidence intervals [1.39]. Nevertheless, this is not a problem for high-performance computing (HPC).

When we assume that the seismic process is Poissonian and that the exact rate of earthquake occurrence, λ , is known, we readily obtain the confidence intervals for the exceedance probability and the mean return period. For the exceedance probability, R ( M , D ) ( equation [1.17]), it is:

[1.40] and for the mean return period T M equation 118 it is 141 - фото 83

and for the mean return period, T ( M ) ( equation [1.18]), it is:

[1.41] Figure 16 taken from OrleckaSikora 2008 shows a practical example of the - фото 84

Figure 1.6, taken from Orlecka-Sikora (2008), shows a practical example of the interval kernel estimation of CDF and the related hazard parameters. The studied seismic events were from Rudna deep copper mine in Poland and were parameterized in terms of seismic energy. Nevertheless, because the magnitude and the logarithm of energy have the same distribution, the specific features of the graphs in Figure 1.6would remain if magnitude was used.

Orlecka-Sikora and Lasocki (2017) presented a modified version of the interval estimation of R ( M , D ) ( equation [1.40]) and T ( M ) ( equation [1.41]), which also takes into account the uncertainty of earthquake occurrence rate, λ . It turned out that the uncertainty of λ only matters when λ D is small, less than 5. For greater λ D , the uncertainty of the CDF estimate dominates, and the role of the uncertainty of λ is negligible. In this connection, this modified version should mostly be used in hazard studies of low seismic activity regions.

Figure 16 Example of interval kernel estimation of CDF and related hazard - фото 85

Figure 1.6. Example of interval kernel estimation of CDF and related hazard parameters. The event size is parametrized by the logarithm of seismic energy. (a) CDF(logE) and its magnified part, (b) exceedance probability of logE=7.0 and (c) mean return period. Solid lines – the point kernel estimates (equations [1.32], [1.17] and [1.18]), dashed lines – the 95% confidence intervals from the Iterated BCa method. Reprinted from Orlecka-Sikora (2008, Figures 11, 14 and 15)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Statistical Methods and Modeling of Seismogenesis»

Представляем Вашему вниманию похожие книги на «Statistical Methods and Modeling of Seismogenesis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Statistical Methods and Modeling of Seismogenesis»

Обсуждение, отзывы о книге «Statistical Methods and Modeling of Seismogenesis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x