Dario Grana - Seismic Reservoir Modeling

Здесь есть возможность читать онлайн «Dario Grana - Seismic Reservoir Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Seismic Reservoir Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Seismic Reservoir Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO₂ sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. 
Seismic Reservoir Modeling: 
Theory, Examples and Algorithms

Seismic Reservoir Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Seismic Reservoir Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In the Bayesian setting, the prior probability represents the prior knowledge about the event of interest and the likelihood function is the probabilistic formulation of the relation between the event of interest and the observable event (i.e. the data). The intuitive idea of Bayes' theorem is to reduce the uncertainty in the prior probability by integrating additional information from the data.

For example, in reservoir modeling applications, the event A might represent the occurrence of porous rocks with porosity higher than 0.30 and the event B might represent the measurements of seismic velocity. Typically, in geoscience studies, prior information about rock and fluid properties can be obtained from geological models, analogues, outcrops, or nearby fields, whereas the likelihood function can be calculated using geophysical models or estimated from available datasets. In the porosity–velocity example, the prior probability of the occurrence of high‐porosity rocks in a given reservoir can be estimated from core samples or data from nearby fields, whereas the likelihood function can be computed using a rock physics model that predicts the velocity response in porous rocks ( Chapter 2).

The calculation of the normalizing constant P ( B ) in Bayes' theorem ( Eq. 1.8) often requires additional probability tools. A useful result in probability theory is the theorem of total probability. We consider an event A and an ensemble of n events { E i} i=1,…,n, and we assume that the events { E i} are mutually exclusive ( E i∩ E j= ∅, for all i , j = 1, …, n with ij ) and collectively exhaustive ( Seismic Reservoir Modeling - изображение 9). These assumptions mean that every possible outcome of the event A is an outcome of one and only one of the events { E i} i=1,…,n. Then, the probability P ( A ) of the event A is given by:

(1.9) The theorem of total probability Eq 19 expresses the probability of an - фото 10

The theorem of total probability ( Eq. 1.9) expresses the probability of an outcome of an event that can be realized via several distinct events as the contribution of the conditional and marginal probabilities.

Example 1.1

We illustrate the application of Bayes' theorem and the theorem of total probability with an example related to the classification of porous rocks. A team of reservoir geologists classifies a group of porous rocks in a reservoir in three categories: shale, silt, and sand. The geologists are interested in rock samples with porosity greater than 0.20. The team wants to answer the following questions: (i) What is the probability of a rock having porosity greater than 0.20? (ii) If a core sample has porosity greater than 0.20, what is the probability that the rock sample is a sand? (iii) If a core sample has porosity less than or equal to 0.20, what is the probability that the rock sample is a shale?

Based on a nearby field, it is estimated that 20% of the reservoir rocks are shale, 50% are silt, and 30% are sand. If the event A represents the rock type occurrence, the available information can be written in terms of the prior probability P ( A ) of the event A as:

Seismic Reservoir Modeling - изображение 11 Seismic Reservoir Modeling - изображение 12 Seismic Reservoir Modeling - изображение 13

The literature data for the geological environment under study indicate that the probability of observing porosity greater than 0.20 in that specific region is 0.05 in shale, 0.15 in silt, and 0.4 in sand. This information represents the likelihood function. If the event B represents the occurrence of rock samples having porosity greater than 0.20, then the available information can be written in terms of the conditional probability P ( BA ):

Seismic Reservoir Modeling - изображение 14 Seismic Reservoir Modeling - изображение 15 Seismic Reservoir Modeling - изображение 16

We first compute the probability P ( B ) of observing high porosity in a rock sample, using the theorem of total probability ( Eq. 1.9):

Then we compute the posterior probability P A - фото 17 Then we compute the posterior probability P A sand B of a sample with - фото 18 Then we compute the posterior probability P A sand B of a sample with - фото 19

Then, we compute the posterior probability P ( A = sandB ) of a sample with porosity greater than 0.20 being a sand using Bayes' theorem ( Eq. 1.8):

Seismic Reservoir Modeling - изображение 20

where the normalizing constant P ( B ) is computed using the theorem of total probability, as shown in question (i).

Finally, the probability Seismic Reservoir Modeling - изображение 21of a sample with porosity less than or equal to 0.20 (event картинка 22) being a shale can be computed in two steps. First, we compute the marginal probability of the complementary event Seismic Reservoir Modeling - изображение 23as:

Seismic Reservoir Modeling - изображение 24

then we compute the conditional probability Seismic Reservoir Modeling - изображение 25using Bayes' theorem ( Eq. 1.8):

13 Statistics We now consider a variable X whose value is uncertain In - фото 26

1.3 Statistics

We now consider a variable X , whose value is uncertain. In statistics, such a variable is called a random variable, or a stochastic variable. A random variable is a variable whose value is subject to variations and cannot be deterministically assessed. In other words, the specific value cannot be predicted with certainty before an experiment. Random variables can take discrete or continuous values. In geophysics, a number of subsurface properties, such as facies types, porosity, or P‐wave velocity, are considered random variables, because they cannot be exactly measured. Direct measurements are also uncertain, and the measurements should be treated as random variables with a distribution that captures the measurement uncertainty.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Seismic Reservoir Modeling»

Представляем Вашему вниманию похожие книги на «Seismic Reservoir Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Seismic Reservoir Modeling»

Обсуждение, отзывы о книге «Seismic Reservoir Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x