Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The phasor form of the E‐field vector of the circularly polarized waves, meeting the above conditions, could be written from equation (4.6.1a)as follows:

(4.6.4) The e jωttimeharmonic factor is suppressed in the above equations The - фото 913

The e jωttime‐harmonic factor is suppressed in the above equations. The time‐domain forms of the circularly polarized waves, using the instantaneous field components at any location in the positive xdirection and also at the - фото 914‐field components, at any location in the positive x‐direction and also at the x = 0, i.e. in the (y‐z)‐plane, are expressed as follows:

(4.6.5) The handedness ie the sense of rotation of the vector of the circularly - фото 915

The handedness , i.e. the sense of rotation of the картинка 916‐vector of the circularly polarized wave is determined by the direction of rotation of the картинка 917‐vector in the transverse (y‐z)‐plane with respect to time, whereas the EM‐wave propagates in the x‐direction. Therefore, using equation (4.6.5f), Fig. (4.10b)shows the anti‐clock rotation of the E‐field vector tracing a circle of radius E 0in the (y‐z)‐plane. The sense of rotation is considered with respect to cos(ωt), taking t = 0. It shows the wave propagating in the positive x‐direction, i.e. the wave coming toward an observer standing on the positive x‐axis is the right‐hand circularly polarized wave (RHCP) . Its field vector is given by equation (4.6.4b). Similarly, equation (4.6.5e)shows the clockwise rotation , i.e. the left‐hand circularly polarized wave (LHCP ) propagating in the positive x‐direction. The magnetic fields of the RHCP and LHCP wave are obtained using equation (4.6.4)with equation (4.5.34a):

(4.6.6) In the case of the wave propagation in the negative xdirection ie the wave - фото 918

In the case of the wave propagation in the negative x‐direction, i.e. the wave moves away from the observer standing on the positive x‐axis, the role of RHCP and LHCP gets interchanged. Further, the handedness of circular polarization can be reversed by applying 180° phase‐shift to either the y or z component of the картинка 919‐field vector. The circular polarization could be further considered as a linear combination of two linearly polarized waves . Alternatively, the linear polarization can also be considered as a linear combination of the left‐hand and right‐hand circularly polarized waves [B.9].

4.6.3 Elliptical Polarization

Two orthogonal field components, in the space quadrature, of unequal magnitude and arbitrary phase angle (φ) between them, generate the elliptical polarization, i.e. the resultant E‐field vector rotates in the plane of polarization such that its tip traces an elliptical path as shown in Fig. (4.10c). The instantaneous orthogonal E‐field components in the x = 0 plane are given below:

(4.6.7) Using the above equation and identity the following equation of the ellipse is - фото 920

Using the above equation and identity the following equation of the ellipse is obtained 468 The semimajor - фото 921the following equation of the ellipse is obtained:

(4.6.8) The semimajor axis OA the semiminor axis OB of the ellipse shown in Fig - фото 922

The semi‐major axis OA, the semi‐minor axis OB of the ellipse shown in Fig. (4.10c), and the axial ratio (AR) of the polarization ellipse are given below [B.9, B.29]:

(4.6.9) The tilt angle θ of the polarization ellipse ie inclination of the major - фото 923

The tilt angle θ of the polarization ellipse, i.e. inclination of the major axis OA with y‐axis is [B.9, B.29]:

(4.6.10) For φ π2 the polarization ellipse is inclined with respect to the yaxis - фото 924

For φ ≠ π/2, the polarization ellipse is inclined with respect to the y‐axis. The linear and circular polarizations are obtained as special cases from the elliptical polarization. For instance, for E z(t) = 0 the wave is horizontally polarized in the y‐direction. For E 0y= E 0z= E 0and φ = ± π/2, the LHCP/RHCP wave is obtained as equation (4.6.9)is reduced to an equation of a circle with OA = OB. For the linear polarization, AR is infinity. However, for the circular polarization, AR is unity. In the case E 0y= E 0z= E 0and φ ≠ π/2, the wave is not circularly polarized and its AR is cotφ/2. For a practical circularly polarized antenna, the axial ratio is frequency‐dependent and its axial ratio bandwidth is defined as the frequency band over which AR ≤ 3dB.

4.6.4 Jones Matrix Description of Polarization States

The polarizing devices change the state of polarization. For instance, the polarizing devices could change the rotation of the linear polarization or convert the linear polarization into circular polarization. The Jones matrix method describes and manipulates the polarization states of the EM‐wave using a 2 × 1 column vector, known as the Jones vector and transfer matrix of the polarizing device, known as the Jones matrix [B.30, B.31]. The Jones matrix is used in chapter‐22 with metasurfaces.

Jones Vector

The polarization state of the EM‐wave propagation in the x‐direction is given by equation (4.6.1). The orthogonal E‐field components can be expressed in the form of the following column vector, known as the Jones vector :

(4.6.11) In the above expression the common phase angle has been absorbed in the - фото 925

In the above expression, the common phase angle has been absorbed in the propagation factor The Jones vector describes polarization states of any plane wave field Some - фото 926. The Jones vector describes polarization states of any plane wave field. Some common polarization states are summarized below with respect to Fig. (4.10):

(4.6.12) In the above expressions the normalized magnitude of the Efield components - фото 927

In the above expressions, the normalized magnitude of the E‐field components are |E oy| = |E oz| = 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x