Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Examples:The Jones matrix of a linear polarizer given by equation (4.6.15c)is transformed below to the rotated Jones matrix [J]e = [JLP(θ)] of a linear polarizer that is rotated at an angle θ:(4.6.22) It is noted that the original linear polarizer in the Cartesian system has no cross‐polarization element. However, the rotated linear polarizer has a cross‐polarization element. The above transformation can be applied to the horizontal polarizer (py = 1, pz = 0) rotated at an angle θ, and also to the linear polarizer rotated at an angle θ = 45°, to get the following rotated Jones matrices:(4.6.23) The anisotropic polarizer with cross‐coupling, in the Cartesian system, is given by equation (4.6.14). The polarizer is rotated by an angle θ. The rotated Jones matrix of the anisotropic polarizer is obtained as follows:(4.6.24)

Jones Matrix for Retarder (Phase Shifter)

The wave retarder also called the waveplate alters the relative phase between two orthogonal field components passing through it. In this respect, it is acting as a phase shifter. The waveplates are designed using the birefringent, i.e. anisotropic material with orthogonal fast‐axis and slow‐axis . The relative permittivity, also the refractive index, of the anisotropic material, has lower value along the fast‐axis and higher value along the slow‐axis, causing relatively slower phase velocity of the EM‐wave propagation along the slow‐axis. The half‐wavelength thick slab, called the half‐wave plate , changes the direction of the linear polarization at its output. Whereas, the quarter‐waveplate , i.e. a quarter‐wavelength thick slab, converts the linearly polarized incident waves into the circularly polarized waves at its output. The waveplates, i.e. the wave retarders, are characterized by the Jones matrices as discussed below.

For the EM‐wave propagating in the x‐direction, the field components at the output of a wave retarder could be written from equation (4.6.11), by normalizing the magnitude of field components to the unity, as follows:

(4.6.25) The J RΔφ is the Jones matrix of a wave retarder waveplate given by - фото 939

The J R(Δφ) is the Jones matrix of a wave retarder ( waveplate ) given by equation (4.6.25b). At the input, the incident wave is linearly polarized and at the output of the retarder slab of thickness d, the differential phase Δφ = φ z− φ yis the relative phase between the field components картинка 940and картинка 941.

Jones Matrix of Half‐waveplate

The Jones matrix of a half‐waveplate and the field components at its output are obtained by taking the relative phase Δφ = π:

(4.6.26) It is noted that at the output of the halfwave plate the phase difference - фото 942

It is noted that at the output of the half‐wave plate the phase difference between two field components is 180°. Two field components are in‐phase at the input of the half‐waveplate.

Jones Matrix of Quarter‐waveplate

The Jones matrix of a quarter‐wave retarder and also the field components at the output are obtained by taking the relative phase Δφ = − π/2:

(4.6.27) In the above equation both field components are equal to E 0 1 It is noted - фото 943

In the above equation, both field components are equal to E 0= 1. It is noted that at the output of the quarter‐waveplate, the wave is a right‐hand circularly polarized wave. In the case, input wave components are and the field components at the output of the quarterwaveplate using - фото 944and the field components at the output of the quarterwaveplate using equation - фото 945 ,the field components at the output of the quarter‐waveplate, using equation (4.6.25a)are

(4.6.28) Equation 4628cshows that an ellipse is traced by the Efield in the - фото 946

Equation (4.6.28c)shows that an ellipse is traced by the E‐field in the (y‐z)‐plane. In this case, the quarter‐waveplate produces an elliptically polarized wave. However, for the case m = n, it degenerates into the circularly polarized wave. Further, for the rotated retarders the rotated Jones matrices could be obtained, similar to the case of the rotated polarizer, using equation (4.6.21a).

4.7 EM‐waves Propagation in Unbounded Anisotropic Medium

Two cases of wave propagations in the uniaxial anisotropic media – without off‐diagonal elements and with off‐diagonal elements, are considered in this section. The dispersion relation is also discussed leading to the concept of hypermedia useful for the realization of hyperlens [J.1, J.5–J.7].

4.7.1 Wave Propagation in Uniaxial Medium

The unbounded lossless homogeneous uniaxial medium is considered. The y‐axis is the optical axis , i.e. the extraordinary axis. In the direction of the optic axis, the permittivity is different as compared to the other two directions. The medium is described by a diagonalized matrix with all off‐diagonal elements zero. The permeability of the medium is μ 0and its permittivity tensor is expressed as follows:

(4.7.1) Figure 413ashows the TEM plane wave propagation in the xdirection The TEM - фото 947

Figure (4.13a)shows the TEM plane wave propagation in the x‐direction. The TEM waves have E x= 0, H x= 0; E y≠ 0, H y≠ 0; E z≠ 0, H z≠ 0. Also, the uniform field components in y and z‐directions do not vary, i.e. /∂y(field) = /∂z(field) = 0. Under these conditions, the following Maxwell equations provide the transverse field components of electric and magnetic fields:

(4.7.2) On expansion the above equations provide the following sets of transverse - фото 948

On expansion, the above equations provide the following sets of transverse field components:

(4.7.3) 474 Figure 413 Wave propagation - фото 949

(4.7.4) Figure 413 Wave propagation uniaxial media On eliminating H zand H yfrom the - фото 950

Figure 413 Wave propagation uniaxial media On eliminating H zand H yfrom the - фото 951

Figure 4.13 Wave propagation uniaxial media.

On eliminating H zand H yfrom the above equations, wave equations for the electric field transverse components are obtained. Likewise, the wave equations for magnetic field transverse components are obtained on eliminating E zand E y:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x