Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.7.21) The nontrivial solution for E ii x y z of the above homogeneous equation - фото 984

The nontrivial solution for E i(i = x, y, z) of the above homogeneous equation is det[ ] = 0, i.e.

(4.7.22) The above dispersion relation is a quadratic equation of any component of k 2 - фото 985

The above dispersion relation is a quadratic equation of any component of k 2. So, there are two solutions for any component of k. Two solutions correspond to two normal modes of propagation in the anisotropic medium. At a fixed frequency, equation (4.7.22)is the equation of an ellipsoid surface in the k‐space (wavevector space) , i.e. the normal space . For an isotropic medium, it is reduced to a sphere. Further, on knowing the wavenumber, the field components E i(i = x, y, z) can be determined from equation (4.7.21).

4.7.4 Concept of Isofrequency Contours and Isofrequency Surfaces

The discussion of dispersion in the uniaxial medium requires an understanding of the concept of isofrequency contours and isofrequency surfaces in the 2D and 3D k‐space. Figure (4.14a–d)explain the concept of isofrequency contours.

The wave propagation is considered in the isotropic (x‐y)‐plane. The dispersion relations for the 2D waves propagation in the isotropic medium and also in air medium are expressed as

(4.7.23) At a fixed frequency ω the above equations are equations of circles in the k - фото 986

At a fixed frequency ω, the above equations are equations of circles in the (k x‐k y)‐plane. Figure (4.14a)shows that the radius of the circle increases with an increase in frequency. It forms a light cone . Figure (4.14b)further shows the increase in the 2D wavevector at the increasing order of frequencies ω 1< ω 2< ω 3< ω 4. The concentric contours of the wavevector are known as the isofrequency contours, displaying the dispersion relation. The light cone of the 2D dispersion diagram is generated by revolving Fig. ( 2.4) of the 1D dispersion diagram, shown in chapter 2, around the ω‐axis. Likewise, 3D isofrequency surfaces are obtained. It is discussed in the next section.

The propagating wave in the z‐direction is described by equation (4.7.12). The propagation constant Introduction To Modern Planar Transmission Lines - изображение 987of the waves must be real. So, the propagating waves are obtained only for Introduction To Modern Planar Transmission Lines - изображение 988, i.e. within the light cone. Outside the light cone, i.e. for Introduction To Modern Planar Transmission Lines - изображение 989, the waves are nonpropagating evanescent waves . Thus, the light cone divides the k‐space into the propagating and evanescent wave regions shown in Fig. (4.14a,c and d).

Further, any point P on the isofrequency contour surface, shown in Fig. (4.14b), connected to the origin O shows the direction of the wavevector. It is also the direction of the phase velocity v p. The direction of the normal at point P shows the direction of the Poynting vector, i.e. the direction of the group velocity v g. For an isotropic medium, both the v pand v gare in the same direction. It is noted that the wavefront is always normal to the wavevector However for the anisotropic medium the phase and group velocities may not - фото 990. However, for the anisotropic medium, the phase and group velocities may not in the same direction. It is discussed below.

Figure 414 Dispersion diagrams of the wave propagating in the zdirection in - фото 991

Figure 4.14 Dispersion diagrams of the wave propagating in the z‐direction in the isotropic medium.

4.7.5 Dispersion Relations in Uniaxial Medium

This section considers the dispersion relation of a uniaxial anisotropic permittivity medium as a special case of the dispersion relation (4.7.19)of the biaxial medium. The permittivity along the optic axis, i.e. the z‐axis is ε zz= ε ‖and permeability of the medium is μ. The (x‐y)‐plane, with permittivity tensor elements ε xx= ε yy= ε ⊥, is a transverse plane. So, the medium is isotropic in the (x‐y)‐plane. The propagation constant along the z‐axis is k zand in the transverse plane, it is k t, satisfying the relation To simplify equation 4719for the uniaxial medium the transverse - фото 992. To simplify equation (4.7.19)for the uniaxial medium, the transverse wavevector картинка 993in the (x‐y)‐plane is aligned such that the wave propagates only along the x‐axis, i.e. k y= 0 and k x= k t. Under such alignment, equation (4.7.19)is reduced to the following dispersion relation:

(4.7.24) The above equation provides the following characteristic equation 4725 - фото 994

The above equation provides the following characteristic equation:

(4.7.25) The above expression is also obtained from equation 4719even for the - фото 995

The above expression is also obtained from equation (4.7.19)even for the alignment of the wavevector to the yaxis ie k x 0 and k y k t So the characteristic equation - фото 996to the y‐axis, i.e. k x= 0 and k y= k t. So, the characteristic equation (4.7.25)gives the following two independent dispersion relations:

(4.7.26) The above equations 4726aand 4726bdemonstrate the presence of two - фото 997

The above equations (4.7.26a)and (4.7.26b)demonstrate the presence of two normal modes of wave propagation in the 3D (k x, k y, k z) – space. Next, the 3D dispersion relation is reduced to the 2D dispersion relation given by equations (4.7.26c)and (4.7.26d). Equation (4.7.26a)is an equation of sphere in the 3D k‐space at a fixed frequency, i.e. at ω = constant. It shows the dispersion relation of the ordinary waves with the wavevector Introduction To Modern Planar Transmission Lines - изображение 998. At increasing order of frequencies, equation (4.7.26a)provides isofrequency spherical surfaces . Likewise, equation (4.7.26b)is an equation of ellipsoid in the 3D k‐space at a fixed frequency. It provides the dispersion relation of the extraordinary waves in the form of the concentric isofrequency ellipsoidal surfaces . The wavevector of extraordinary wave k eis rotation dependent.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x