Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The wave equations (4.5.13a)and (4.5.13b), for the E yand H zfield components, are solved to get the total solution as a superposition of two waves traveling in opposite directions:

4528 In the above expression is the intrinsic or char - фото 841

(4.5.28) In the above expression is the intrinsic or characteristic impedance of the - фото 842

In the above expression, is the intrinsic or characteristic impedance of the uniform plane in free - фото 843is the intrinsic or characteristic impedance, of the uniform plane in free space. The power movement is obtained from the Poynting vector The power of the forward wave travels in the positive xdirection The - фото 844. The power of the forward wave travels in the positive x‐direction. The direction of the power movement is the direction of the group velocity . In the x‐direction, the direction of the phase velocity is associated with the direction of the propagation vector , i.e. the wavenumber Figure 49dshows the propagating EMwave in an arbitrary direction of the - фото 845.

Figure (4.9d)shows the propagating EM‐wave in an arbitrary direction of the wavevector The wavevector is normal to the equiphase surface The position vector of a - фото 846The wavevector Introduction To Modern Planar Transmission Lines - изображение 847is normal to the equiphase surface. The position vector of a point P at the equiphase surface is Introduction To Modern Planar Transmission Lines - изображение 848. The following expressions describe the propagating wave as a solution to the wave equations (4.5.12a)and (4.5.12c):

(4.5.29) Introduction To Modern Planar Transmission Lines - изображение 849

where Introduction To Modern Planar Transmission Lines - изображение 850. Equation (4.5.29d)is the dispersion equation . In the above equations, field quantities show time dependence, i.e. temporal dependence , through factor e jωtand space dependence, i.e. spatial dependence , through factor картинка 851. It also shows the lagging phase of the propagating wave in the positive direction. This is the convention adopted by engineers. On several occasions, physicist prefers an alternative sign convention, i.e. e −jωtand картинка 852. It leads to a leading phase for propagating waves in a positive direction. A reader must be careful while reading literature from several sources. For y‐polarized wave propagating in the x‐direction with k y= k z= 0 and k x= β x− jα, the solution of the wave equation could be written as follows:

(4.5.30) The second terms of the above equations show wave propagation in the negative - фото 853

The second terms of the above equations show wave propagation in the negative x‐direction. The wave equations show the decaying propagating waves. For the case α = 0, the above equations are the same as that of equations (4.5.28).

4.5.4 Vector Algebraic Form of Maxwell Equations

Maxwell’s equations in the unbounded medium could be also written in the vector algebraic form . The del operator can be replaced as follows: Introduction To Modern Planar Transmission Lines - изображение 854. Using equation (4.4.9), for the charge‐free lossless medium ρ = σ = 0, two sets of Maxwell equations, for the isotropic and anisotropic media, are written in the following algebraic forms:

Set #I for the isotropic medium :

Set II for the anisotropic medium 4531 Equations 4531aand - фото 855

Set #II for the anisotropic medium :

(4.5.31) Equations 4531aand 4531bshow that for the positive values of μ and ε - фото 856

Equations (4.5.31a)and (4.5.31b)show that for the positive values of μ and ε , the triplet картинка 857 follows the right‐handed orthogonal coordinate system . Equations (4.5.31c)and (4.5.31d)show that in an isotropic medium, the field vectors картинка 858and картинка 859are orthogonal to the wavevector картинка 860. Equations (4.5.31c)and (4.5.31d)directly follow from the first two Maxwell equations by taking their dot product with the wavevector картинка 861. Equation (4.5.31a)further shows that картинка 862is normal to both картинка 863vectors, and equation (4.5.31b)shows that картинка 864is normal to both картинка 865vectors. In brief, the vectors картинка 866are orthogonal to each other, and there is no field component along the wavevector картинка 867 ,i.e. the wave is a transverse electromagnetic (TEM) type . Also, in an isotropic medium, картинка 868 is parallel to vector картинка 869 and картинка 870 is parallel to vector картинка 871. This statement does not hold for the anisotropic medium . Maxwell equations (4.5.31e)– (4.5.31h)apply to an anisotropic medium. In an anisotropic medium, equations (4.5.31e)and (4.5.31f)show that картинка 872is normal to vectors картинка 873and картинка 874is normal to vectors картинка 875. However, картинка 876is not parallel to картинка 877. Also, картинка 878is not parallel to картинка 879. It is discussed in subsection (4.2.3).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x