Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.5.19) Introduction To Modern Planar Transmission Lines - изображение 826

In the above equation, Introduction To Modern Planar Transmission Lines - изображение 827is the velocity of the EM‐wave in the lossless dielectric medium. The presence of the loss has decreased the phase velocity, i.e. a lossy medium supports the dispersive slow‐wave propagation. The use of α and β from equations (4.5.11a) and (4.5.11b)provide more accurate results. The dispersion in a medium is always associated with loss. This fundamental property is further discussed in chapter 6.

4.5.3 Uniform Plane Waves in Linear Lossless Homogeneous Isotropic Medium

Figure (4.9a)shows the propagation of the TEM wave in the x‐direction of an unbounded medium. Figure (4.9b)further shows that for the TEM wave, electric and magnetic field components, i.e. the pairs (E y, H z), or (E z, H y), are transverse to the direction of propagation, i.e. ± x ‐ direction. For the field pair (E y, H z), the wave is y‐polarized; and for the field pair(E z, H y), it is the z‐polarized. The polarization of an EM‐wave is determined by the direction of the картинка 828vector. The propagating wave is called the uniform plane wave , as amplitudes of electric and magnetic fields are constant over the equiphase surfaces. Figure (4.9c)shows that the phases of the E yfield at any instant of time, over the equiphase surfaces, are either 0° or 180°. The (y‐z)‐plane is the equiphase surface.

The field components of a uniform plane wave do not change with y and z coordinates, i.e. /∂y(field E or H) = /∂z(field E or H) = 0. The field components are a function of x only. So, the field components of the EM‐wave propagating in the x‐direction can be written as follows:

(4.5.20) In the above expressions the sign shows the wave propagation in the - фото 829

In the above expressions, the (−) sign shows the wave propagation in the positive x‐direction, whereas the (+) sign is for the wave propagation in the negative x‐direction. The wave propagation in the positive x‐direction is discussed below.

Introduction To Modern Planar Transmission Lines - изображение 830

Figure 4.9 TEM mode wave in an unbounded medium.

The above expressions related to a uniform plane wave, in an external source‐free Introduction To Modern Planar Transmission Lines - изображение 831lossless Introduction To Modern Planar Transmission Lines - изображение 832medium, can be applied to the Maxwell equations (4.4.1). In the present case, the del operator is replaced by a derivative with respect to x, i.e. Introduction To Modern Planar Transmission Lines - изображение 833as a derivative with respect to y and z are zero. Maxwell first curl equation is reduced to a simpler form:

(4.5.21) On separating each component of the fields the following expressions are - фото 834

On separating each component of the fields, the following expressions are obtained:

(4.5.22) Likewise the following expressions are obtained from Maxwells second curl - фото 835

Likewise, the following expressions are obtained from Maxwell's second curl expression (4.4.1b):

(4.5.23) It is seen from the above equations that the E xand H xcomponents in the - фото 836

It is seen from the above equations that the E xand H xcomponents, in the direction of propagation, are time‐independent, i.e. constant. They do not play any role in the wave propagation and can be assumed to be zero, without affecting the wave propagation [B.3]. Only transverse field components play a role in wave propagation. The time‐varying H ycomponent generates the E z, whereas the time‐varying E ycomponent generates the H z. It is also true for another time‐varying pair (H z, E z). Maxwell divergence relations also show E x/∂x = H x/∂x = 0. Again, E xand H xcomponents do not show any variation along the direction of propagation that is essential for wave propagation. So, in the TEM mode propagation, the longitudinal field components are zero, i.e. E x= H x= 0.

By using equation (4.5.20)with the above equations, the time‐harmonic fields are rewritten as follows:

(4.5.24) On using equation 4520with the above equations the following algebraic - фото 837

On using equation (4.5.20)with the above equations, the following algebraic expressions are obtained for the EM‐wave propagating in the positive x‐direction:

(4.5.25) The wave impedance in free space or in homogeneous unbounded medium is - фото 838

The wave impedance in free space, or in homogeneous unbounded medium, is defined in a plane normal to the direction of propagation [B.2]. For instance, Fig. (4.9a)shows the direction of propagation is along the x‐axis, and wave impedance is defined in the (y‐z) plane. It is also called the intrinsic impedance η 0of free space and intrinsic impedance η of material filled homogeneous space. The following expression is obtained for the wave impedance η, for y‐polarized waves, from equation (4.5.25a):

(4.5.26) Equation 4525bprovides the following wave impedance for the zpolarized - фото 839

Equation (4.5.25b)provides the following wave impedance for the z‐polarized waves:

(4.5.27) The positive wave impedance of the E y H z or E z H y fields corresponds - фото 840

The positive wave impedance of the (E y, H z) or (−E z, H y) fields corresponds to a wave traveling in the +x direction. However, for the (E z, H y) fields, the wave impedance is negative showing the wave propagation in the negative x‐direction. Under certain conditions, a medium can have an imaginary value of propagation constant, i.e. β x= − jp. In this case, the wave impedance becomes reactive, and there is no wave propagation. Again, the wave equation (4.5.20)is reduced to E i= E 0ie −pxe jωtand H i= H 0ie −pxe jωtfor the wave propagation in the positive x‐direction. These are decaying nonpropagating evanescent mode waves. These are only decaying oscillations.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x