Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The differential form of Maxwell equations does not account for the creation of the fields in the space due to the sources such as the charge or current distributed over a line, surface, or volume. This case is incorporated in Maxwell’s equations by converting them to the integral forms . It is achieved with the help of two vector identities:

(4.4.12) 4413 Figure 48bshows the existence of a vector over - фото 754

(4.4.13) Figure 48bshows the existence of a vector over the surface S Its boundary - фото 755

Figure (4.8b)shows the existence of a vector картинка 756over the surface S. Its boundary is enclosed by the perimeter C. Stoke theorem is defined with respect to Fig. (4.8b)and Gauss divergence theorem with respect to Fig. (4.8c). The unit vector картинка 757shows the direction of a normal to the surface S. Figure (4.8c)shows a vector картинка 758existing in the whole of the volume V that is enclosed by the surface S.

Maxwell’s equations in the integral form, for 0 are obtained by taking the surface integral of Maxwells equation 441a - фото 759=0, are obtained by taking the surface integral of Maxwell’s equation (4.4.1a):

(4.4.14) It is assumed that a surface enclosing the magnetic field does not change with - фото 760

It is assumed that a surface enclosing the magnetic field does not change with time. By using equation (4.4.12), equation (4.4.14)is changed in the following form:

(4.4.15) where ψ mis the magnetic flux It is the Faraday law of induction that gives - фото 761

where ψ mis the magnetic flux. It is the Faraday law of induction that gives the induced voltage V, i.e. the emf, on a conducting loop containing the time‐varying magnetic flux, ψ m:

(4.4.16) Likewise using Maxwells equation 441band 4412for 0 the second - фото 762

Likewise, using Maxwell’s equation (4.4.1b)and (4.4.12)for 0 the second Maxwells equation is written in the integral form giving the - фото 763=0, the second Maxwell’s equation is written in the integral form, giving the modified Ampere’s law :

(4.4.17) In the above equation J cand J dare conduction and displacement current - фото 764

In the above equation, J cand J dare conduction and displacement current densities creating the magnetic field The above expression is generalized Amperes law due to Maxwell The - фото 765. The above expression is generalized Ampere’s law due to Maxwell. The magnetomotive force, mmf, is obtained as follows:

(4.4.18) where ψ eis the timedependent electric flux Equation 4418bis Maxwells - фото 766

where ψ eis the time‐dependent electric flux. Equation (4.4.18b)is Maxwell’s induction law giving the induced mmf due to the time‐varying electric field. For the source free medium with Jc = 0, it is the complementary induction law of Faraday’s law of induction.

4.4.2 Power and Energy Relation from Maxwell Equations

A medium supporting the electromagnetic fields also stores the EM‐energy and supports the power flow. The EM‐power is supplied to the enclosure by the time‐dependent external electric current density J extand the time‐dependent external magnetic current density M ext. They create the time‐dependent electric field ( картинка 767and the time‐dependent magnetic field ( shown in Fig 48a The external power supplied by the source to the - фото 768) shown in Fig. (4.8a).

The external power, supplied by the source to the medium, is

(4.4.19) The field and source quantities have RMS values and these are also - фото 769

The field and source quantities have RMS values, and these are also time‐dependent. The power on a transmission line, carrying the voltage and current wave, is P = VI cos φ, i.e. a scalar product of the voltage and current. The EM‐wave is a transverse electromagnetic wave, where the fields картинка 770are normal to each other. The power density картинка 771is defined by a vector product of Introduction To Modern Planar Transmission Lines - изображение 772, known as the Poynting vector :

(4.4.20) Introduction To Modern Planar Transmission Lines - изображение 773

The divergence of the above equation provides the power entering, or leaving, a location in the space:

(4.4.21) The energy contained per unit volume ie the energy density in a dispersive - фото 774

The energy contained per unit volume, i.e. the energy density , in a dispersive and a nondispersive medium, in the form of the electric and magnetic energy, is given by the following expressions:

(4.4.22) A physical medium is dispersive For a dispersive medium the modified equation - фото 775

A physical medium is dispersive. For a dispersive medium, the modified equation (4.4.22b)is valid [B.2, B.8, B.11–B.15]. The energy density W is a positive quantity, i.e. the following relations must be satisfied:

(4.4.23) The medium having finite conductivity σ dissipates the EMenergy in the form of - фото 776

The medium having finite conductivity σ dissipates the EM‐energy in the form of heat given by the Joule's law:

(4.4.24) The total power carried in a medium in the form of the EMwave is 4425 - фото 777

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x