Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.5.6) Introduction To Modern Planar Transmission Lines - изображение 801

where Introduction To Modern Planar Transmission Lines - изображение 802is the propagation constant, i.e. the wavenumber (k 0) in free space. A lossless material medium is electrically characterized by (ε r, μ r). However, it is also characterized by the refractive index картинка 803. In the case of a dielectric medium, it is The velocity of the EMwave propagation in a medium is 457 For a lossy - фото 804. The velocity of the EM‐wave propagation in a medium is

(4.5.7) For a lossy medium the complex propagation constant can be further written as - фото 805

For a lossy medium, the complex propagation constant can be further written as:

(4.5.8) For a lossy dielectric medium ε ris defined as a complex quantity 459 - фото 806

For a lossy dielectric medium, ε ris defined as a complex quantity:

(4.5.9) It is like the previous discussion on the complex relative permittivity in a - фото 807

It is like the previous discussion on the complex relative permittivity in a lossy dielectric medium with the following expressions for the - фото 808in a lossy dielectric medium, with the following expressions for the loss‐tangent and propagation constant:

(4.5.10) In the above equation the real part of the complex relative permittivity is - фото 809

In the above equation, the real part of the complex relative permittivity is On separating the real and imaginary parts the attenuation constant α and - фото 810.

On separating the real and imaginary parts, the attenuation constant (α) and propagation constant (β) are obtained:

(4.5.11) The wave equation 453aand 453bfor the fields in a lossy and - фото 811

The wave equation (4.5.3a)and (4.5.3b)for the ( fields in a lossy and lossless α 0 media are rewritten below 4512 - фото 812) fields in a lossy and lossless (α = 0) media are rewritten below:

(4.5.12) The propagation constant β is also expressed as the wavenumber k of the - фото 813

The propagation constant β is also expressed as the wavenumber k of the wavevector картинка 814. Sometimes in place of the complex propagation constant γ, the complex wavevector k is used as a complex propagation constant, i.e. k *= β − jα. On using the complex k, the field is written as E 0e −jkx= E 0e −j(β − jα)x= (E 0e −αx) e −jβx.

4.5.2 1D Wave Equation

For the wave propagating only in the x‐direction, equations (4.5.12a)and (4.5.12b)are reduced to the 1D wave equations:

(4.5.13) Equation 4513ahas the solution The timeharmonic wave propagating in the - фото 815

Equation (4.5.13a)has the solution, The timeharmonic wave propagating in the xdirection is 4514 The field - фото 816. The time‐harmonic wave propagating in the x‐direction is

(4.5.14) The field equations in the timedomain are also written as follows 4515 - фото 817

The field equations in the time‐domain are also written as follows:

(4.5.15) Introduction To Modern Planar Transmission Lines - изображение 818

In the case of a lossy medium, equation (4.5.11)shows that both α and β depend on the loss‐tangent of a medium. For a lossless medium, tan δ = 0, leading to α = 0, and Introduction To Modern Planar Transmission Lines - изображение 819. In the case of low conductivity, i.e. the low‐loss medium, the approximation tan δ ≪ 1, or (σ/ωε 0ε r) ≪ 1, can be used. In such a medium σ ≪ ωε 0ε r ,the contribution of the conduction current is small as compared to that of the displacement current. Such a medium is a dielectric medium with a small loss. On approximating, the following expression is obtained from equation 4511a 4516 The - фото 820the following expression is obtained from equation (4.5.11a):

(4.5.16) The above equation computes the dielectric loss of a lowloss dielectric - фото 821

The above equation computes the dielectric loss of a low‐loss dielectric medium. The approximation is used to get an approximate value of β for such medium from equation - фото 822is used to get an approximate value of β for such medium from equation (4.5.11b):

(4.5.17) For a lowloss dielectric medium the dielectric loss due to tan δ increases - фото 823

For a low‐loss dielectric medium the dielectric loss, due to tan δ , increases linearly with frequency ω. However, the propagation constant β is dispersionless, giving the frequency‐independent phase velocity. The above approximation can also be carried out in a little different way:

(4.5.18) In the above equation is the characteristic intrinsic impedance of free - фото 824

In the above equation, is the characteristic intrinsic impedance of free space A lowloss medium - фото 825is the characteristic ( intrinsic ) impedance of free space. A low‐loss medium is a mildly dispersive medium, with the frequency‐dependent phase velocity:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x