Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Equations (4.5.31a)and (4.5.31b)are solved to get the vector algebraic form of wave equation as follows 4532 - фото 880to get the vector algebraic form of wave equation as follows:

(4.5.32) Likewise the wave equation for could be written that is useful for the EMwave - фото 881

Likewise, the wave equation for картинка 882could be written that is useful for the EM‐wave propagation in an anisotropic medium. Equation (4.5.32b)is an eigenvalue equation, and the nontrivial solution for E ≠ 0 provides the eigenvalue of k belonging to the propagating waves in the unbounded isotropic medium. The medium supports two numbers of linearly y‐polarized waves known as normal modes propagating in ±x‐directions with same phase velocity (v p) given below:

(4.5.33) Introduction To Modern Planar Transmission Lines - изображение 883

In the above equation, Introduction To Modern Planar Transmission Lines - изображение 884is the wavenumber in free space. Using the intrinsic impedance with equation (4.5.31a), the magnetic field vector and Poynting vector are obtained below:

(4.5.34) In the case of the propagation of waves in an isotropic medium the wavevector - фото 885

In the case of the propagation of waves in an isotropic medium, the wavevector картинка 886 and Poynting vector картинка 887 both are in the same direction . It provides the phase and group velocities in the same direction.

4.5.5 Uniform Plane Waves in Lossy Conducting Medium

The loss‐tangent (tan δ), given in equation (4.5.10), is much greater than unity, i.e. tan δ ≫ 1 for a highly conducting medium. It means a contribution of the conduction current is much more than that of the displacement current in a conducting medium, i.e. Introduction To Modern Planar Transmission Lines - изображение 888. However, the approximation for a low‐loss medium is taken differently. The propagation constants of the EM‐wave in a highly conducting and also in a low‐loss medium are obtained from equation (4.5.4)as follows:

(4.5.35) In a lossy medium the plane wave propagates in the xdirection with the - фото 889

In a lossy medium, the plane wave propagates in the x‐direction with the uniform field components in the (y‐z)‐plane as shown in Fig. (4.9a). The field components are given by equation (4.5.24), incorporating the conductivity σ of a medium. They are modified as,

(4.5.36) Using the field solutions from equations 4520 the above equations are - фото 890

Using the field solutions from equations (4.5.20), the above equations are reduced to the following forms:

(4.5.37) In the above equations the complex propagation constant γ is given by equation - фото 891

In the above equations, the complex propagation constant γ is given by equation (4.5.4).

The conducting medium is highly dispersive, whereas the low‐loss medium is nondispersive. Using equations ( 4.5.35a,b)with equation ( 4.5.12a), the wave equation and the phase velocity in a conducting medium are given below:

(4.5.38) It shows that the conducting medium is dispersive and the phase velocity - фото 892

It shows that the conducting medium is dispersive, and the phase velocity increases with an increase in frequency.

The characteristic impedance ( intrinsic impedance ) of the low‐loss and highly conducting media are obtained from equations (4.5.37)and (4.5.35a)as follows:

(4.5.39) The characteristic impedance ie the intrinsic impedance η c of a highloss - фото 893

The characteristic impedance, i.e. the intrinsic impedance η c, of a high‐loss conducting medium is a complex quantity, with an equal magnitude of real and inductive imaginary parts. The real part of картинка 894is known as the surface resistance , R sincurring an Ohmic loss in the conducting medium; and its imaginary gives the internal inductance L iof a conducting medium:

(4.5.40) For the unbounded medium R s ω L i and the internal inductance L iis - фото 895

For the unbounded medium, |R s| = |ω L i|, and the internal inductance L iis due to the penetration of the magnetic field in the medium. It is further discussed in subsection (8.4.2) of chapter 8. The expressions for the magnetic and electric fields and Poynting vector in a conducting medium are given below:

(4.5.41) The α β and η cfor a highly conducting medium are given by equations - фото 896

The α, β ,and η cfor a highly conducting medium are given by equations (4.5.35b)and (4.5.39b). The uniform plane wave in an unbounded conducting medium is still TEM‐type. However, field components H zand E yare not in‐phase. These are in‐phase in a dielectric medium shown in Fig. (4.9a). The power transported per unit area, in a conducting medium, in the x‐direction is also given by the following expression:

(4.5.42) The power transmitted through the conducting lossy medium is a complex - фото 897

The power transmitted through the conducting lossy medium is a complex quantity. Its real part gives the power that comes out from the medium of length x, whereas the imaginary part gives stored energy due to the field penetration in the conductor. The input power density available at x = 0 is The power density after traveling distance x in a highly conducting medium is - фото 898. The power density after traveling distance x in a highly conducting medium is

(4.5.43) The field decreases by a factor e αx whereas the wave travels through a lossy - фото 899

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x