Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.4.1) For the limiting case Δx 0 Δt 0 the following expressions are obtained - фото 514

For the limiting case, Δx → 0, Δt → 0, the following expressions are obtained:

(3.4.2) Introduction To Modern Planar Transmission Lines - изображение 515

The voltage v across the shunt inductor is

(3.4.3) Introduction To Modern Planar Transmission Lines - изображение 516

From equation (3.4.2a,b), the following voltage wave equation is obtained:

(3.4.4) On substituting i 2t from equation 343in the above equation the above - фото 517

On substituting i 2/∂t from equation (3.4.3)in the above equation, the above wave equation is reduced to

(3.4.5) Introduction To Modern Planar Transmission Lines - изображение 518

where Introduction To Modern Planar Transmission Lines - изображение 519is the phase velocity of the standard nondispersive line without shunt loaded inductance, i.e. for the case L sh→ ∞. For a line in the air medium, the phase velocity is the velocity of the EM‐wave in a vacuum, i.e. v 0= c. The cut‐off frequency is defined as Introduction To Modern Planar Transmission Lines - изображение 520. Finally, the above voltage wave equation of the dispersive transmission line is rewritten as

(3.4.6) Equation 346is known as the KleinGordon equation B20 For a line - фото 521

Equation (3.4.6)is known as the Klein–Gordon equation [B.20]. For a line without cut‐off frequency, i.e. for ω c= 0, the above equation is reduced to the standard dispersionless transmission line equation (2.1.24)of chapter 2. On assuming the harmonic solution for the forward‐moving voltage, the voltage on the loaded line is

(3.4.7) On substituting equation 347in equation 346 the following dispersion - фото 522

On substituting equation (3.4.7)in equation (3.4.6), the following dispersion relation is obtained:

(3.4.8) Equation 348is identical to equation 338afor the plasma medium The - фото 523

Equation (3.4.8)is identical to equation (3.3.8a)for the plasma medium. The cut‐off frequency ω cof the loaded line corresponds to the plasma frequency ω p. Thus, a plasma medium can be modeled by the shunt inductor loaded transmission line . Further, Fig (3.27a)shows that below the cut‐off frequency, i.e. for ω < ω cthe circuit is reduced to the L‐L circuit presenting inductors in both the series and shunt arm. Such a medium is called the epsilon negative (ENG) medium , discussed in section (5.5)of chapter 5.

For frequency ω < ω c, the propagation constant β is the imaginary quantity and the voltage wave cannot propagate on the shunt inductor loaded line. The voltage wave propagates only for ω > ω c. Thus, the shunt inductor loaded line behaves like a high‐pass filter (HPF). It is like a metallic waveguide discussed in subsection (7.4.1) of chapter 7. For ω < ω c, the loaded line supports the nonpropagating attenuated wave, called the evanescent wave . Its attenuation constant α is obtained by the following expression:

(3.4.9) The phase and group velocities of the wave on the loaded dispersive line are - фото 524

The phase and group velocities of the wave on the loaded dispersive line are

(3.4.10) Figure 327bshows the dispersion behavior ie the function ω fβ on the - фото 525

Figure (3.27b)shows the dispersion behavior, i.e. the function ω = f(β), on the (ω − β) diagram for the shunt inductor loaded line. It shows the frequency‐dependent behavior of the propagation constant β and attenuation constant α. The dashed line is the light line . Its slope ψ at the origin is the phase velocity of the EM‐wave in free space, i.e. v p= v 0= c. The propagation constant β exists above the light line only for ω > ω cand wave attenuation occurs for ω < ω c. At location P, the local slope ϕ provides the group velocity v g, whereas the slope ψ of the point P at the origin O provides the phase velocity v pof the propagating EM‐wave on the loaded transmission line.

Figure 327 Shunt inductor loaded line and its characteristics Figure - фото 526

Figure 3.27 Shunt inductor loaded line and its characteristics.

Figure (3.27c)shows the variations in the phase velocity and the group velocity with frequency. For ω → ω c, v p→ ∞ , v g→ 0, and for ω → ∞, both wave velocities move toward the light line, i.e. toward the phase velocity (v 0) of the unloaded host transmission line. From equation (3.4.10a)dv p/dω is negative, i.e. the phase velocity decreases with frequency, whereas from the equation (3.4.10b), dv g/dω is positive, i.e. the group velocity increases with frequency. However, both velocities tend toward v 0, i.e. phase velocity in the unloaded host medium. Figure (3.27b)also shows that the propagation constant β increases with frequency. Thus, the shunt inductor loaded line has normal dispersion . The wave considered is a forward‐moving wave with both the phase and group velocities in the same direction, as both anti‐clockwise gradients ψ and ϕ defining the phase and group velocities respectively are positive. Above the cut‐off frequency, i.e. above the light line in the fast‐wave region, the phase velocity is higher than the phase velocity of the unloaded L‐C type transmission line. The shunt inductor loaded line supports the fast‐wave . The wave is fast as compared to the wave velocity, shown as the slope of the light line, on an unloaded transmission line.

The group velocity v gis also frequency‐dependent, causing dispersion in the envelope of a wave‐packet. Therefore, if a voltage wave‐packet, say a Gaussian wave‐packet, propagates on a shunt inductor loaded line, it disperses while moving forward. Figure (3.27d)shows that its amplitude decreases and the pulse width increases. This is known as the group dispersion . The time delay of the envelope over the distance d is

(3.4.11) Introduction To Modern Planar Transmission Lines - изображение 527

In the present subsection, the propagation constant of the loaded line is obtained by solving the wave equation. However, the dispersion relation and also the characteristics impedance of the loaded line could be obtained from the circuit analysis. This simple method is applicable to several interesting cases of loaded lines forming the basis for the modern Electromagnetic bandgap (EBG) materials and metamaterials.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x