Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.3.3) In equation 333 c is the velocity of EMwave in free space The above - фото 487

In equation (3.3.3), c is the velocity of EM‐wave in free space. The above expressions are obtained from equations ( 4.5.16) and ( 4.5.19) of chapter 4. The complex permittivity is given by ε = ε ′− jε ″. The imaginary part, showing a loss in a medium, is related to the conductivity of a medium through relation σ = ωε ″. If ε ′and ε ″are not frequency‐dependent, the propagation constant β is not frequency‐dependent and the phase velocity is also not frequency‐dependent. However, if they are frequency dependent, the phase velocity is also frequency‐dependent. The phase velocity in the low‐loss dielectric medium is

(3.3.4) Therefore the presence of loss decreases the phase velocity of EMwave This - фото 488

Therefore, the presence of loss decreases the phase velocity of EM‐wave. This kind of wave is known as the slow‐wave . The slow‐wave can be dispersive or nondispersive. However, it is associated with a loss. This aspect is further illustrated through the EM‐wave propagation in a high conductivity medium. The conducting medium is discussed in subsection ( 4.5.5) of chapter 4. The attenuation (α), phase constant (β), and phase velocity (v p,con) of a highly conducting medium are given by equation ( 4.5.35b)of chapter 4[B.3]:

(3.3.5) Introduction To Modern Planar Transmission Lines - изображение 489

(3.3.6) The above expressions are obtained for a highly conducting medium σωε 1 - фото 490

The above expressions are obtained for a highly conducting medium, σ/ωε >> 1. It does not apply to the lossless medium with σ = 0. The wave propagation is associated with significant loss (α) given by equation (3.3.5). Moreover, both the attenuation constant and phase velocity are frequency dependent, so a conducting medium is highly dispersive. However, the periodic structures and other mechanisms give slow‐wave structures with a small loss. Such structures are useful for the development of compact microwave components and devices [B.1, ]. The slow‐wave periodic transmission line structures are discussed in chapter 19.

Some EM‐wave supporting media have cut‐off property. They support the wave propagation only above the certain characteristic frequency of a medium or a structure. These media and structures are also dispersive. For instance, the nonmagnetic plasma medium has such cut‐off property [B.4, B.14]. The plasma medium is discussed in the subsection (6.5.2) of chapter 6. The permittivity of a plasma medium is given by equation (6.5.16 ):

(3.3.7) In the above expression f pis the plasma frequency that is a characteristic - фото 491

In the above expression, f pis the plasma frequency that is a characteristic cut‐off frequency of the plasma medium [B.4, B.14]. The permeability of nonmagnetized plasma is μ = μ 0. Other parameters are as follows‐ε 0: permittivity of free space, N: electron density, e: electron charge, and m e: electron mass. The propagation constant, phase velocity, and plasma wavelength λ plasmaof the EM‐wave wave in a plasma medium are given below:

(3.3.8) Introduction To Modern Planar Transmission Lines - изображение 492

In equation (3.3.8), Introduction To Modern Planar Transmission Lines - изображение 493is the velocity of EM‐wave in the homogeneous medium with parameters ε 0and μ. The wavelength in the homogeneous medium is λ = v/f. However, the nonmagnetized plasma medium has the parameters ε 0, μ osupporting the wavelength λ 0= c/f. The nonmagnetized plasma medium behaves as free space.

The phase velocity of the EM‐waves in a plasma medium is frequency‐dependent. Therefore, it is a dispersive medium that supports a fast‐wave . It is fast in the sense that the phase velocity is higher than the phase velocity of the EM‐wave in free space given by Introduction To Modern Planar Transmission Lines - изображение 494. The plasma medium exhibits the cut‐off phenomenon, similar to the cut‐off behavior of the waveguide medium. The waveguide medium is discussed in the section (7.4) of chapter 7. There is no wave propagation at the plasma frequency f = f p. The plasma frequency f pbehaves like the cut‐off frequency f cof a waveguide. Thus, the waveguide can be used to simulate the electrical behavior of plasma . For f < f p, no wave propagation takes place, as the propagation constant β becomes an imaginary quantity. Such a wave is known as an evanescent wave . It is an exponentially decaying nonpropagating wave (E = E 0e −αz). The standard metallic waveguide also supports the cut‐off phenomenon and has a frequency‐dependent phase velocity [B.1, B.5, B.7, B.8, B.15–B.17].

The dispersion is a property of the wave‐supporting medium. The phase velocity of a wave in a dispersive medium can either decrease or increase with the increase in frequency. Thus, all dispersive media could be put into two groups – (i) normal dispersive medium and (ii) abnormal or anomalous dispersive medium .

Figure 321 Nature of normal positive dispersion Figure 321a and bshow - фото 495

Figure 3.21 Nature of normal (positive) dispersion.

Figure (3.21a and b)show the general behavior of a medium having normal dispersion. The relative permittivity of such a medium increases with frequency, i.e. dε r/df is positive, and the phase velocity decreases with frequency, i.e. dv p/df is negative. A microstrip line provides such a medium for the normal dispersion. The effective relative permittivity of a microstrip line increases with frequency leading to a decrease in the phase velocity with an increase in frequency. The microstrip is discussed in chapter 8.

Figure (3.22a and b)show the general behavior of an anomalous dispersive medium. The relative permittivity of such a medium decreases with an increase in frequency, i.e. dε r/df < 0 (negative). It leads to an increase in the phase velocity with an increase in frequency, i.e. dv p/df > 0 (positive). A microstrip line on a semiconductor substrate having the Metal, Insulator, Semiconductor (MIS) or the Schottky structure, in the transition region, is an anomalous dispersive medium [J.3, J.4].

It is emphasized that there is nothing abnormal with the anomalous dispersion. Both kinds of dispersions exist in reality. The normal dispersion is also called the positive dispersion as the gradient of ε rwith frequency is positive, i.e. dε r/df > 0. Similarly, the anomalous dispersion is called the negative dispersion with dε r/df < 0. The relative permittivity of material undergoes both kinds of dispersion depending upon the physical cause of dispersion. The dispersion is caused by several kinds of material polarizations – dipolar, ionic, electronic, and interfacial polarization. Once the frequency is varied from low‐frequency to the optical frequency, the material medium undergoes these polarization changes, and the propagating wave experiences both the normal and anomalous dispersion at different frequencies [B.17, B.18]. It is discussed in chapter 6.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x