Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where The Mathematics of Fluid Flow Through Porous Media - изображение 177denotes the divergence operator. With respect to an orthonormal basis The Mathematics of Fluid Flow Through Porous Media - изображение 178,

Applying the identities 24and 25to the integral mass balance 23yields - фото 179

Applying the identities (2.4)and (2.5)to the integral mass balance (2.3)yields the equivalent equation

(2.6) valid for any timeindependent region If the integrand in Eq 26is - фото 180

valid for any time‐independent region If the integrand in Eq 26is continuous then the integrand must vanish - фото 181.

If the integrand in Eq. (2.6)is continuous, then the integrand must vanish:

(2.7) Equation 27is the differential mass balance Exercise 22 Verify the - фото 182

Equation (2.7)is the differential mass balance.

Exercise 2.2 Verify the principle used to derive Eq . (2.7) from the integral equation (2.6). An argument by contradiction may be the easiest approach: Assume that the integrand on the left side of Eq . (2.6) is positive at some point картинка 183 at some time картинка 184 . Since this function is continuous, it must be positive in a neighborhood of картинка 185 at time картинка 186 . Consider a fixed region contained in this neighborhood. A similar argument dispatches the possibility that the integrand is negative at some point .

Exercise 2.3 Justify the following equivalent of the mass balance (2.7):

(2.8) The Mathematics of Fluid Flow Through Porous Media - изображение 187

The differential mass balance in the form (2.8)facilitates another observation. In certain motions, the density following any particle is constant. In this case, The Mathematics of Fluid Flow Through Porous Media - изображение 188, so the mass balance implies that

картинка 189

In this case, we say that the motion is incompressible. This concept does not imply anything about the material being modeled; it merely describes the motion based on properties of the velocity field. A compressible material can undergo incompressible motion.

The mass balance is the simplest of the balance laws of continuum mechanics. Other balance laws include the momentum balance, the angular momentum balance, and the energy balance. A related thermodynamic law known, as the entropy inequality, also plays an important role in many settings. In each of these laws, an integral version is fundamental, and it is possible to derive differential versions under certain continuity conditions. For a detailed review of the integral balance laws and the derivation of their differential versions, see [4]. With the exception of several applications of the mass balance discussed in Chapters 5and 6, the remainder of this book focuses on differential balance laws.

2.2.2 Momentum Balance

The differential momentum balance equation is

(2.9) often called Cauchys first law For its derivation from an integral form see - фото 190

often called Cauchy's first law. (For its derivation from an integral form, see [4, Chapter 4]. Strictly speaking, the momentum balance states that there exists a frame of reference in which Cauchy's first law holds.) Each term in Eq. (2.9)is a vector‐valued function having dimension The Mathematics of Fluid Flow Through Porous Media - изображение 191. Thus, Cauchy's first law comprises three scalar PDEs.

The terms in Eq. (2.9)require explanation. First, with respect to any orthonormal basis The Mathematics of Fluid Flow Through Porous Media - изображение 192,

The Mathematics of Fluid Flow Through Porous Media - фото 193

so applying this operator to yields which is clearly a vectorvalued function Second the function - фото 194yields

which is clearly a vectorvalued function Second the function represents the - фото 195

which is clearly a vector‐valued function.

Second, the function картинка 196represents the body force per unit mass, having dimension картинка 197. In this book, the only body force of interest is gravity, and The Mathematics of Fluid Flow Through Porous Media - изображение 198reduces to the gravitational acceleration near Earth's surface. The total body force acting on a part of the body is

The Mathematics of Fluid Flow Through Porous Media - изображение 199

where картинка 200is the region occupied by the part.

Third, the function картинка 201is the stress tensor. This entity deserves more extended discussion, starting with the term tensor. A second‐order tensor is a linear transformation that maps vectors into vectors. Its geometric action remains fixed under changes in coordinate systems, a requirement discussed in more detail in Section 3.7. The stress tensor is a linear transformation that describes a type of force different from the body force.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x