Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Also missing from the topics covered here is a discussion of fluid flows in extremely flow‐resistant media, often but debatably referred to as nanodarcy flows but more properly characterized as non‐Darcy flows. Flows of this type have increased in practical importance during the past two decades, owing especially to vastly improved technologies for producing natural gas from shale formations when hydrocarbon commodity prices justify the costs. The physics here are complex, involving gas–rock interactions in interstices whose typical diameters approach the mean free path of the gas molecules. None of the classical macroscopic transport models—such as Darcy's law or Fick's law of diffusion—suffices by itself to capture these phenomena [37, 81]. One can hope that further advances in our understanding of these flows, analogous to the advances described above for classical Darcy flows, will yield more settled mathematical models in years to come.

2 Mechanics

2.1 Kinematics of Simple Continua

At the macroscopic scale of observation, greater than about картинка 80m, a natural porous medium such as sandstone is a complex mixture of solids and fluids, separated by interfaces whose geometries are often too small for humans to discern without aid. This book focuses mainly on the macroscopic scale. However, viewed at the microscopic scale, say картинка 81картинка 82m, the solids and fluids in a porous medium appear as distinct continua, separated by observable interfaces. We begin with the mechanics of these simple continua. Section 2.5extends the discussion to the mechanics of multiconstituent continua, applicable at the macroscopic scale of observation.

The first step is to establish the kinematics. This branch of mechanics provides a framework for describing the motions of continua geometrically, without reference to the forces that cause motion. The treatment here is an abbreviated version of material that appears in standard courses on continuum mechanics; for more details consult [4].

2.1.1 Referential and Spatial Coordinates

In continuum mechanics, the term bodyrefers to a collection картинка 83of particles, sometimes called material points. A subset of the body that is a body in its own right is a partof the body. We assign to each body a reference configuration, which associates with the body a region картинка 84in three‐dimensional Euclidean space. In the reference configuration, each particle in the body has a position картинка 85, unique to that particle, as shown in Figure 2.1. The vector картинка 86serves as a label, called the referentialor Lagrangiancoordinates of the particle. As with a person's home address, from a strictly logical point of view the particle need not ever occupy the point картинка 87. That said, in some applications it is useful to choose the reference configuration in a way that associates each particle with a position that it occupies at some prescribed time, for example Figure 21 A reference configuration of a body showing the referential - фото 88.

Figure 21 A reference configuration of a body showing the referential - фото 89

Figure 2.1 A reference configuration of a body, showing the referential coordinates картинка 90used to label a particle according to its position in the reference configuration.

The central aim of kinematics is to describe the trajectories of particles, that is, to determine the position картинка 91in three‐dimensional Euclidean space that each particle картинка 92occupies at every time картинка 93. For this purpose we assume that there exists a one‐parameter family картинка 94of vector‐valued functions, time картинка 95being the parameter, that has the following properties.

1 The vector , having dimension L, gives the spatial position of the particle at time .

2 At each time , the function of the referential coordinates is one‐to‐one, onto, and continuously differentiable with respect to .

3 Also at each fixed time , has a continuously differentiable inverse such that . That is, tells us which particle occupies the spatial position at time .

4 For each value of the coordinate , the function is twice continuously differentiable with respect to .

The function The Mathematics of Fluid Flow Through Porous Media - изображение 96is the deformationof the body, illustrated in Figure 2.2. We call the vector The Mathematics of Fluid Flow Through Porous Media - изображение 97the spatialor Euleriancoordinates of the particle at time Figure 22 The deformation mapping the refe - фото 98at time Figure 22 The deformation mapping the reference configuration - фото 99.

Figure 22 The deformation mapping the reference configuration onto the bodys - фото 100

Figure 2.2 The deformation mapping the reference configuration onto the bodys configuration at time Figure 23 Re - фото 101onto the body's configuration at time Figure 23 Regions and - фото 102.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x