Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2 Chapter 3Figure 3.1 Schematic diagram of Darcy's apparatus for measuring water flow t...Figure 3.2 A piece of mathematical surface in a porous medium, in which shad...Figure 3.3 The transfer of momentum away from a solid object moving through ...Figure 3.4 Experimental configuration used to define 1 darcy.Figure 3.5 Schematic diagram of an array of fixed solid in which viscous eff...Figure 3.6 One‐dimensional flow geometry used to motivate the Forchheimer eq...Figure 3.7 Level sets of картинка 12, shown as dashed curves, along with the gradient Figure 3.8 Construction of a scalar potential картинка 13such that картинка 14, by computing a ...Figure 3.9 A piezometer showing the piezometric head картинка 15as the height to whic...Figure 3.10 Geometry of areal flow in a confined aquifer. The elevations картинка 16a...Figure 3.11 Fluid flux across the upper confining layer.Figure 3.12 Sandstone core samples. Sample (a) has dark shale streaks parall...Figure 3.13 Direction cosine картинка 17between a vector картинка 18in one orthonormal basis a...

3 Chapter 4Figure 4.1 Geometry of the Dupuit–Thiem model.Figure 4.2 Definition of the drawdown картинка 19at an observation well.Figure 4.3 Calculation of transmissivity using drawdown data.Figure 4.4 A two‐dimensional region картинка 20with an external boundary картинка 21and a well...Figure 4.5 Two‐dimensional region картинка 22used to model the region картинка 23in Figure 4.4...Figure 4.6 Graphs of the Theis solution for vertically averaged piezometric ...Figure 4.7 Hypothetical plot of drawdown versus картинка 24for the Theis method.Figure 4.8 Schematic diagram of a vertical slice through an unconfined aquif...Figure 4.9 Weak solution to the porous medium equation showing a nondifferen...Figure 4.10 Location of the advancing front The Mathematics of Fluid Flow Through Porous Media - изображение 25as a function of time.

4 Chapter 5Figure 5.1 Qualitative illustration of Taylor diffusion. (a) Parabolic veloc...Figure 5.2 Mechanical dispersion effects. (a) Solute spreading as a result o...Figure 5.3 Initial concentration profile картинка 26for a sample initial‐value proble...Figure 5.4 Geometry of the method of characteristics, showing a hypothetical...Figure 5.5 (a) An admissible initial curve for a first‐order PDE. This curve...Figure 5.6 The solution картинка 27to the moving plume problem at two different times...Figure 5.7 Graph of the fundamental solution to the heat equation showing th...Figure 5.8 Graph of moving front solutions 5.36 to the advection–diffusion e...Figure 5.9 Snapshot of a numerical solution to the moving‐front problem usin...Figure 5.10 Snapshot of a numerical solution to the moving‐front problem usi...Figure 5.11 (a) Linear isotherm. (b) Freundlich isotherms for different valu...Figure 5.12 Graph of the ramp‐like initial concentration profile for the ini...Figure 5.13 Characteristic curves associated with the initial‐value problem ...Figure 5.14 Resolution to the problem of intersecting characteristics in Fig...Figure 5.15 Chord on the isotherm defining the speed of the adsorbate concen...Figure 5.16 Graphs of the solution картинка 28at several time levels, showing the for...

5 Chapter 6Figure 6.1 A piece картинка 29of smooth surface with boundary картинка 30, which is parametrize...Figure 6.2 A curved interface картинка 31with the pressure on the concave side being ...Figure 6.3 Wetting fluid картинка 32and nonwetting fluid картинка 33in a tube with contact ang...Figure 6.4 Capillary rise of water in a tube open at the top to the air.Figure 6.5 Capillary rise of water in a bundle of tubes having different rad...Figure 6.6 Typical capillary pressure curves showing the effects of hysteres...Figure 6.7 Schematic profile of soil in the near‐surface region, showing the...Figure 6.8 Schematic diagram of a tensiometer showing the water‐saturated po...Figure 6.9 Graph of a typical pressure head картинка 34for variably saturated flow in...Figure 6.10 Graph of a typical unsaturated hydraulic conductivity картинка 35for vari...Figure 6.11 An advancing moisture content front showing a wetting front, dow...Figure 6.12 Typical relative permeability curves.Figure 6.13 Typical fractional flow function associated with relative permea...Figure 6.14 One‐dimensional flow geometry used in the Buckley–Leverett probl...Figure 6.15 Ramp‐shaped initial condition used in the initial‐value problem ...Figure 6.16 Graphic solution to the Buckley–Leverett problem: Part (a) shows...Figure 6.17 Saturation shock in the solution to the Buckley–Leverett problem...Figure 6.18 Welge tangent construction to determine the saturation картинка 36at the ...Figure 6.19 Characteristic curves for the Buckley–Leverett problem showing t...Figure 6.20 Classical solution to the Buckley–Leverett problem with nonzero ...Figure 6.21 Characteristic curves for the Buckley–Leverett solution showing ...Figure 6.22 Oil production rate as a function of time predicted by the Buckl...Figure 6.23 Welge's graphic construction of the average oil saturation картинка 37at ...Figure 6.24 Schematic diagram of viscous fingering: A more mobile injected f...Figure 6.25 Geometry of the initially planar displacement front картинка 38separating...Figure 6.26 Perturbation картинка 39to the initial displacement front Figure 627 The perturbation as a level surface of the function showing - фото 40.Figure 6.27 The perturbation as a level surface of the function showing aFigure 628 A ternary diagram for threephase saturations showing - фото 41, showing a...Figure 6.28 A ternary diagram for three‐phase saturations showing the geomet...Figure 6.29 Saturation profiles for gas, oil, and water used in Exercise 6.1...Figure 6.30 Hypothetical three‐phase relative permeability contour plots sho...Figure 6.31 Saturation ternary diagram showing the reduced ternary diagram a...Figure 6.32 Two families of integral curves in the reduced ternary diagram d...Figure 6.33 Two saturation routes connecting the constant states картинка 42and картинка 43via...Figure 6.34 Saturation profile for the three‐phase displacement modeled by t...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x