Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6 Chapter 7Figure 7.1 Flow chart for equation‐of‐state thermodynamic calculations in a ...

7 Appendix BFigure B.1 Cylindrical coordinates.Figure B.2 Spherical coordinates.

8 Appendix DFigure D.1 A parametrized surface картинка 44showing the unit normal vector картинка 45and the...

Guide

1 Cover Page

2 Table of Contents

3 Begin Reading

Pages

1 iii

2 iv

3 v

4 xi

5 xii

6 1

7 2

8 3

9 4

10 5

11 6

12 7

13 8

14 9

15 10

16 11

17 12

18 13

19 14

20 15

21 16

22 17

23 18

24 19

25 20

26 21

27 22

28 23

29 24

30 25

31 26

32 27

33 28

34 29

35 30

36 31

37 33

38 34

39 35

40 36

41 37

42 38

43 39

44 40

45 41

46 42

47 43

48 44

49 45

50 46

51 47

52 48

53 49

54 50

55 51

56 52

57 53

58 54

59 55

60 56

61 57

62 58

63 59

64 60

65 61

66 62

67 63

68 64

69 65

70 66

71 67

72 68

73 69

74 70

75 71

76 72

77 73

78 74

79 75

80 76

81 77

82 78

83 79

84 80

85 81

86 82

87 83

88 84

89 85

90 86

91 87

92 88

93 89

94 90

95 91

96 92

97 93

98 95

99 96

100 97

101 98

102 99

103 100

104 101

105 102

106 103

107 104

108 105

109 106

110 107

111 108

112 109

113 110

114 111

115 112

116 113

117 114

118 115

119 116

120 117

121 118

122 119

123 121

124 122

125 123

126 124

127 125

128 126

129 127

130 128

131 129

132 130

133 131

134 132

135 133

136 134

137 135

138 136

139 137

140 138

141 139

142 140

143 141

144 142

145 143

146 144

147 145

148 146

149 147

150 148

151 149

152 150

153 151

154 152

155 153

156 154

157 155

158 156

159 157

160 158

161 159

162 160

163 161

164 162

165 163

166 164

167 165

168 166

169 167

170 168

171 169

172 170

173 171

174 172

175 173

176 174

177 175

178 176

179 177

180 178

181 179

182 180

183 181

184 182

185 183

186 184

187 185

188 186

189 187

190 189

191 190

192 191

193 193

194 194

195 195

196 196

197 197

198 198

199 199

200 200

201 201

202 202

203 203

204 204

205 205

206 206

207 207

208 208

209 209

210 210

211 211

212 212

213 213

Preface

Seldom turns out the way it does in the song.

Robert Hunter

This book provides a semester‐length course in the mathematics of fluid flows in porous media. Over a 20‐year span, I taught such a course every few years to doctoral students in engineering, mathematics, and geophysics. Most of these students' research involved flow and transport in groundwater aquifers, soils, and petroleum reservoirs. The students' mathematical backgrounds ranged from standard undergraduate engineering requirements to more advanced, graduate‐level training.

The book emphasizes analytic aspects of flows in porous media. This focus may seem odd: Most mathematically oriented scholarship in the area is computational in nature, owing both to the heterogeneity of natural porous media and to the inherent nonlinearity of many underground flow models. Nevertheless, while many superb books cover computational methods for flows in porous media, intelligent design of numerical approximations also requires a grasp of certain analytic questions:

Where do the governing equations come from?

What physics do they model, and what physics do they neglect?

What qualitative properties do their solutions exhibit?

Where appropriate, the book discusses numerical implications of these questions.

The exposition should be accessible to anyone who has completed a baccalaureate program in engineering, mathematics, or physics at a US university. The book makes extensive use of multivariable calculus, including the integral theorems of vector field theory, and ordinary differential equations. Several sections exploit concepts from first‐semester linear algebra. No prior study of partial differential equations is necessary, but some exposure to them is helpful.

After a brief introduction in Chapter 1, Chapter 2introduces the mass and momentum balance laws from which the governing partial differential equations arise. This chapter sets the stage for a pattern that appears throughout the book: We derive governing equations, then analyze representative or generic solutions to infer important attributes of the flows.

Chapters 3through 5examine models of single‐fluid flows, followed by models of the transport of chemical species in the subsurface. After a discussion in Chapter 6of multiphase flows, traditionally the province of oil reservoir engineers but now also important in groundwater contaminant hydrology and carbon dioxide sequestration, Chapter 7provides an overview multifluid, multispecies flows, also called compositional flows. This level of complexity admits few analytic solutions. Therefore, Chapter 7focuses on model formulation.

Two features of the book deserve comment.

Over 100 exercises, most of them straightforward, appear throughout the text. Their main purpose is to engage the reader in some of the steps required to develop the theory.

There are four appendices. The first simply lists symbols that have dedicated physical meanings. The remaining appendices cover three common curvilinear coordinate systems, the Buckingham Pi theorem of dimensional analysis, and some aspects of surface integrals. While needed at certain junctures in the text, these topics seem ancillary to the book's main focus.

I owe thanks to dozens of students at the University of Wyoming who endured early versions of the notes for this book. These men and women convinced me of its utility and offered many corrections and suggestions for improvement. Professor Frederico Furtado kindly offered additional corrections, generous encouragement, and insights deeper than he will admit. I also owe sincerest thanks to my colleagues in the University of Wyoming's Department of Mathematics and Statistics, from whom I have learned a lot. I cannot have asked for a better academic home. Finally, my wife, Adele Aldrich, deserves more gratitude than I know how to express, for her support through the entire process.

Myron B. Allen

Laramie, Wyoming

December, 2020

1 Introduction

1.1 Historical Setting

The mathematical theory of fluid flows in porous media has a distinguished history. Most of this theory ultimately rests on Henry Darcy's 1856 engineering study [43], summarized in Section 3.1, of the water supplies in Dijon, France. A year after the publication of this meticulous and seminal work, Jules Dupuit [49], a giant among early groundwater scientists, recognized that Darcy's findings implied a differential equation. This observation proved to be crucial. For the next 75 years or so, the subject grew to encompass problems in multiple space dimensions—hence partial differential equation s( PDE s)—with major contributions emerging mainly from the groundwater hydrology community. Pioneers included Joseph Boussinesq [25, 26], Philipp Forchheimer [53, 54], Charles S. Slichter [136], Edgar Buckingham [30], and Lorenzo A. Richards [129].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x