Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

hyperbolic at any point of the ‐plane where ;

parabolic at any point of the ‐plane where ;

elliptic at any point of the ‐plane where .

Extending this terminology, we say that a first‐order PDE of the form

The Mathematics of Fluid Flow Through Porous Media - изображение 58

is hyperbolic at any point The Mathematics of Fluid Flow Through Porous Media - изображение 59where The Mathematics of Fluid Flow Through Porous Media - изображение 60.

Exercise 1.1 Verify the following classifications, where картинка 61 and are realvalued with Mathematicians associate the wave e - фото 62 are real‐valued with Mathematicians associate the wave equation with timedependent processes - фото 63:

Mathematicians associate the wave equation with timedependent processes that - фото 64

Mathematicians associate the wave equation with time‐dependent processes that exhibit wave‐like behavior, the heat equation with time‐dependent processes that exhibit diffusive behavior, and the Laplace equation with steady‐state processes. These associations arise from applications, some of which this book explores, reinforced by theoretical analyses of the three exemplars in Exercise 1.1. For more information about the classification of PDEs, see [65, Section 2‐6].

1.3 Dimensions and Units

In contrast to most texts on pure mathematics, in this book physical dimensionsplay an important role. We adopt the basic physical quantities length, mass, and time, having physical dimensions картинка 65, картинка 66, and картинка 67, respectively. All other physical quantities encountered in this book—except for one case involving temperature in Chapter 7—are derived quantities, having physical dimensions that are products of powers of картинка 68, картинка 69, and картинка 70.

For example, the physical dimension of force картинка 71arises from Newton's second law картинка 72, where denotes mass and denotes acceleration Analyzing the physical dimensio - фото 73denotes mass and denotes acceleration Analyzing the physical dimensions of quantities that - фото 74denotes acceleration:

Analyzing the physical dimensions of quantities that arise in physical laws can - фото 75

Analyzing the physical dimensions of quantities that arise in physical laws can yield surprisingly powerful mathematical results. Subsequent chapters exploit this concept many times.

Physical laws such as картинка 76require a way to assign numerical values to the physical quantities involved. We do this by comparison with standards, a process called measurement. For example, to assign a numerical value to the length of an object, we compare it to a length to which we have assigned a numerical value by fiat. A choice of standards for measuring картинка 77, картинка 78, and картинка 79, applied consistently for all occurrences of length, mass, and time, defines a system of units. Changing the system of units typically changes the numerical values that we measure, the exception being dimensionlessquantities, which have dimension 1.

Where practical, this book uses the Système Internationale (SI) as the preferred system of units. The current standards for time, length, and mass in the SI are as follows:

Time: One second (s) is the duration of 9 192 631 770 periods of the radiation emitted by the transition between the two hyperfine levels of the ground state of cesium‐133. This period of time is approximately 1/86 400 of one Earth day.

Length: One meter (m) is the distance traveled in a vacuum by light in 1/299 792 458 s. This distance is approximately times the distance from the Earth's geographic north pole to the equator along a great circle.

Mass: One kilogram (kg) is the mass required to fix the value of the Planck constant as kg , given the definition of one second and 1 m. This mass is approximately that of (1 liter) of water at room temperature and pressure.

In some cases, non‐SI units are more convenient for measuring physical quantities that arise in the bench‐ or field‐scale study of fluid flows in porous media. When these cases arise, we give the factor that enables conversion to SI units. The fact that scientists and engineers prefer non‐SI units in some instances highlights the inherently subjective nature of units: Humans tend to prefer standards that yield numerical values not far from 1 in our everyday experience. One advantage of using dimensionless quantities—a technique employed frequently in this book—is that we avoid this subjectivity.

1.4 Limitations in Scope

Three limitations in scope are worth noting. First, we treat only isothermal flows in porous media, that is, flows at constant temperature. This restriction conveniently allows us to ignore the energy balance equation in deriving governing PDEs. On the other hand, it also eliminates several types of flows that have important applications, including flows in geothermal reservoirs and thermal methods of enhanced oil recovery, such as steam flooding.

Also glaringly absent from the table of contents is the topic of flows in fractured porous media. Geoscientists correctly point out that most geologic porous media possess fractures, which exert significant influences on fluid flows. Yet the mathematics of flow in fractured porous media remains poorly delineated, owing not so much to the absence of mathematical models (see [21] for a recent overview and [8, 15, 86, 153] for prominent examples) but, more importantly, to the observation that fractures exist at many scales of observation. In some underground formations, one must know something about the geometry of individual fractures to model fluid flows accurately. In these settings, the modeler's challenge is to represent the discrete fracture system (or statistical realizations) on tractably coarse computational grids. In other geologic settings, it suffices to treat the pore network and the fracture network as overlapping porosity systems, and the challenge is to model how fluids move within and between them. This spectrum of modeling approaches deserves a monograph of its own.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x