Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 23 Regions and occupied by a body in two referenc - фото 103

Figure 2.3 Regions картинка 104and картинка 105occupied by a body in two reference configurations, along with the corresponding deformations картинка 106and картинка 107that map a given particle onto a position vector картинка 108at time картинка 109.

Exercise 2.1 Let картинка 110 and картинка 111 be the regions occupied by a body in two different reference configurations, giving the referential coordinates of a certain particle as картинка 112 and картинка 113 , respectively, as illustrated in Figure 2.3. Let картинка 114 and картинка 115 , respectively, denote the deformations associated with these two reference configurations. Thus the spatial position of the particle at time The Mathematics of Fluid Flow Through Porous Media - изображение 116 is The Mathematics of Fluid Flow Through Porous Media - изображение 117 . Justify the relationship The Mathematics of Fluid Flow Through Porous Media - изображение 118 . This relationship makes it possible to reconcile the analyses of motion by observers who choose different reference configurations .

2.1.2 Velocity and the Material Derivative

In classical mechanics, it is straightforward to calculate a particle's velocity: Differentiate the particle's spatial position with respect to time. Continuum mechanics employs the same concept. The velocityof particle The Mathematics of Fluid Flow Through Porous Media - изображение 119is the time derivative of its position:

(2.1) The Mathematics of Fluid Flow Through Porous Media - изображение 120

This function has dimension картинка 121. In taking this partial derivative, we hold the particle картинка 122fixed and differentiate with respect to картинка 123, just as in classical mechanics. We call the velocity (2.1)the referential velocityor Lagrangian velocity.

We distinguish this velocity from another notion of velocity that arises by measuring what happens at a fixed position in space, as with an anemometer or wind vane attached to a stationary building. This concept of velocity commonly arises in fluid mechanics. In this case, we differentiate with respect to картинка 124, holding the spatial coordinate The Mathematics of Fluid Flow Through Porous Media - изображение 125fixed. To calculate this spatialor Eulerian velocityfrom the deformation, we first determine which particle The Mathematics of Fluid Flow Through Porous Media - изображение 126passes through at time then compute the velocity of that particle - фото 127at time then compute the velocity of that particle Figure 24 - фото 128, then compute the velocity of that particle:

Figure 24 Orthonormal basis vectors defining a Cartesian coordinate system - фото 129 Figure 24 Orthonormal basis vectors defining a Cartesian coordinate system - фото 130

Figure 2.4 Orthonormal basis vectors defining a Cartesian coordinate system.

Since the idea of differentiating with respect to time holding the particle картинка 131fixed applies to other functions, we adopt a special notation for this operation, called the material derivative. If картинка 132is a differentiable function of that is a function of referential coordinatesits material derivative is - фото 133—that is, a function of referential coordinates—its material derivative is straightforward:

However if is a function of spatial coordinates where - фото 134

However, if The Mathematics of Fluid Flow Through Porous Media - изображение 135is a function of spatial coordinates The Mathematics of Fluid Flow Through Porous Media - изображение 136, where The Mathematics of Fluid Flow Through Porous Media - изображение 137, calculating its material derivative requires the chain rule. In this context, several common notations for partial differentiation can be ambiguous. If we denote by картинка 138and картинка 139the operations of partial differentiation of картинка 140with respect to its first and second arguments and respectively then In the third line of this derivation - фото 141and respectively then In the third line of this derivation denotes the - фото 142, respectively, then

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x