Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
In the third line of this derivation denotes the gradient of the function - фото 143

In the third line of this derivation, картинка 144denotes the gradient of the function картинка 145, that is, its derivative with respect to the vector‐valued spatial position The Mathematics of Fluid Flow Through Porous Media - изображение 146. With respect to any orthonormal basis The Mathematics of Fluid Flow Through Porous Media - изображение 147, as drawn in Figure 2.4,

The Mathematics of Fluid Flow Through Porous Media - изображение 148

In short, for a function of spatial position and time the material derivative is 22 Balance Laws - фото 149of spatial position and time, the material derivative is

22 Balance Laws for Simple Continua The partial differential equations PDEs - фото 150

2.2 Balance Laws for Simple Continua

The partial differential equations (PDEs) governing flows through porous media arise from balance laws. All of the flows treated in this book are isothermal, that is, the temperature is constant in time and uniform in space. With this assumption in place, we need only work with the balance laws governing mass and momentum—with one exception noted below.

Figure 25 A timeindependent region having oriented boundary - фото 151

Figure 2.5 A time‐independent region картинка 152having oriented boundary картинка 153and unit outward normal vector field картинка 154. The small arrows represent the spatial velocity.

2.2.1 Mass Balance

Consider first the mass balance. We associate with each body a nonnegative, integrable function картинка 155, called the mass density. This function gives the mass contained in any region The Mathematics of Fluid Flow Through Porous Media - изображение 156of three‐dimensional Euclidean space as the volume integral

(2.2) The Mathematics of Fluid Flow Through Porous Media - изображение 157

having physical dimension картинка 158. Here, картинка 159denotes the element of volume integration. Since The Mathematics of Fluid Flow Through Porous Media - изображение 160is nonnegative, so is the mass. The expression (2.2)requires that The Mathematics of Fluid Flow Through Porous Media - изображение 161.

The mass balance arises from a simple observation: The rate of change in the mass inside any region of threedimensional space exactly balances the rate of movement of mass across - фото 162of three‐dimensional space exactly balances the rate of movement of mass across the region's boundary. In symbols,

(2.3) This equation is the integral mass balance Here denotes the boundary of - фото 163

This equation is the integral mass balance. Here, картинка 164denotes the boundary of картинка 165; картинка 166denotes the unit‐length vector field orthogonal to картинка 167and pointing outward, as Figure 2.5depicts; and картинка 168denotes the element of surface integration. We call the function картинка 169in the integral on the right side of Eq. (2.3)the mass fluxper unit area; the integrand картинка 170is the component of mass flux per unit area in the direction of the unit vector картинка 171, that is, outward from картинка 172. The surface integral itself, together with the negative sign, is the net fluxof mass inward across картинка 173.

Often of greater utility than the integral equation (2.3)is a pointwise form of the mass balance, valid when the density and velocity are sufficiently smooth. To derive this form, consider a region that does not change in time In this case 24 Also by the divergence - фото 174that does not change in time. In this case,

(2.4) Also by the divergence theorem 25 where denote - фото 175

Also, by the divergence theorem,

(2.5) where denotes the divergence operator With respect to an orthonormal basis - фото 176

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x