Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The mass and momentum balance laws

(2.10) furnish four scalar PDEs involving the 16 scalar functions required to specify - фото 229

furnish four scalar PDEs involving the 16 scalar functions required to specify картинка 230, картинка 231, картинка 232, and картинка 233. The symmetry of the stress tensor, картинка 234, reduces the number of independent scalar functions to 13. From the mathematical point of view, a well posed problem involving Eqs. (2.10)requires картинка 235additional equations to close the system. We call these equations constitutive relationships.

From the engineer's point of view, constitutive relationships define the physical system being modeled. Since the mass and momentum balance laws apply to all materials, by themselves they provide no way to distinguish among different types of fluids and solids. If we regard the differential equations (2.10)as governing the mass density картинка 236and velocity картинка 237, then we need to specify constitutive relationships for the three scalar functions defining the body force and the six independent scalar functions that define the matrix representation - фото 238and the six independent scalar functions that define the matrix representation of the stress tensor This book examines - фото 239that define the matrix representation of the stress tensor. This book examines only a small number of constitutive relationships, chosen from the myriad that scientists and engineers have developed to model the remarkable variety of materials found in nature.

Figure 28 Coordinate system used to define the depth function 231 Body - фото 240

Figure 2.8 Coordinate system used to define the depth function картинка 241.

2.3.1 Body Force

For the body force, which is gravity in all of the problems examined here, we adopt the constitutive relationship картинка 242. Here картинка 243m картинка 244denotes the gravitational acceleration, which varies across Earth's surface, and we adopt a Cartesian coordinate system in which картинка 245points away from Earth's center, as shown in Figure 2.8.

An alternative way of writing this expression proves useful in subsequent sections. Define the depth function картинка 246as the mapping that assigns to each spatial point картинка 247its depth картинка 248below some datum, at which as drawn in Figure 28 We often take the datum to be Earths surface but - фото 249, as drawn in Figure 2.8. We often take the datum to be Earth's surface, but other choices are possible. Observe that

which has dimension Therefore we write the constitutive equation for the - фото 250

which has dimension картинка 251. Therefore, we write the constitutive equation for the body force as картинка 252.

2.3.2 Stress in Fluids

The stress tensor картинка 253enjoys a richer set of possibilities. The simplest is the constitutive relationship for an ideal fluid, in which картинка 254. Here, картинка 255is a scalar function called the mechanical pressure, having dimension картинка 256(force/area). The SI unit for pressure is 1 pascal, abbreviated as 1 Pa and defined as 1 kg картинка 257 картинка 258. The symbol denotes the identity tensor With respect to any orthonormal basis the stress - фото 259denotes the identity tensor. With respect to any orthonormal basis, the stress of an ideal fluid has matrix representation

(2.11) The Mathematics of Fluid Flow Through Porous Media - изображение 260

Thus, in an ideal fluid, there are no shear stresses, and the fluid experiences only compressive and tensile stresses. Also, there are no preferred directions: The Mathematics of Fluid Flow Through Porous Media - изображение 261. We describe this fact by saying that the stress tensor is isotropic. Section 3.7 discusses isotropic tensors in more detail.

For an ideal fluid in the presence of gravity, the momentum balance reduces to the following equation:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x