Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media

Здесь есть возможность читать онлайн «Myron B. Allen, III - The Mathematics of Fluid Flow Through Porous Media» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Mathematics of Fluid Flow Through Porous Media: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Mathematics of Fluid Flow Through Porous Media»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the techniques necessary to build and use computational models of porous media fluid flow  In 
, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. 
Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, 
 is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. 
Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: 
A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, 
 also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

The Mathematics of Fluid Flow Through Porous Media — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Mathematics of Fluid Flow Through Porous Media», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
By the chain rule for any sufficiently differentiable function - фото 291

By the chain rule, for any sufficiently differentiable function Figure 29 Geometry of the Stokes problem for - фото 292,

Figure 29 Geometry of the Stokes problem for slow fluid flow around a solid - фото 293 The Mathematics of Fluid Flow Through Porous Media - изображение 294

Figure 2.9 Geometry of the Stokes problem for slow fluid flow around a solid sphere.

Here,

The Mathematics of Fluid Flow Through Porous Media - изображение 295

denotes the gradient operator with respect to the dimensionless spatial variable картинка 296.

Exercise 2.9 Substitute these operators into the Navier–Stokes equation (2.15) and simplify to get the dimensionless Navier–Stokes equation :

(2.16) The Mathematics of Fluid Flow Through Porous Media - изображение 297

where The Mathematics of Fluid Flow Through Porous Media - изображение 298.

The dimensionless parameter картинка 299in Eq. (2.16)is the Reynolds number, named after Irish‐born fluid mechanician Osborne Reynolds [128]. This number serves as a unit‐free gauge of the ratio of inertial effects to viscous effects and, heuristically, as an index of mathematical intractability. We associate the regime картинка 300with slow flows in which viscous effects dominate those associated with inertia. When картинка 301is much smaller than 1, it is common to neglect the inertial terms.

2.4 Two Classic Problems in Fluid Mechanics

As mentioned in Section 2.3, the Navier–Stokes equation (2.15)poses formidable mathematical challenges. Exact solutions are known only in special geometries and only under highly restrictive assumptions, many of which allow us to neglect the nonlinear inertial term картинка 302. We now examine two such problems in fluid mechanics that bear on the analysis of flows in porous media. Each serves as a highly simplified model of fluid flow in the interstices of a porous medium, and each involves significant reductions in complexity compared with the full Navier–Stokes equation. The Hagen–Poiseuille problemis a simple model of fluid flows in a straight, cylindrical tube, which one can envision as an idealized pore channel. The Stokes problemmodels slow, viscous flows around a solid sphere, which one can imagine as an idealized solid grain.

2.4.1 Hagen–Poiseuille Flow

One of the earliest known exact solutions to the Navier–Stokes equation arose from a simple but important model examined by Gotthilf Hagen, a German fluid mechanician, and French physicist J.L.M. Poiseuille, mentioned in Section 2.3. Citing Hagen's 1839 work [67], in 1840, Poiseuille [122] developed a classic solution for flow through a pipe. The derivation presented here follows that given by British mathematician G.K. Batchelor [16, Section 4.2].

Consider steady flow in a thin, horizontal, cylindrical tube having circular cross‐section and radius картинка 303. Let the fluid's density and viscosity be constant. Orient the Cartesian coordinate system so that the картинка 304‐axis coincides with the axis of the tube.

The problem simplifies if we temporarily convert to cylindrical coordinates, defined by the coordinate transformation

(B.5) reviewed in Appendix B Here represents position along the axis of the tube - фото 305

reviewed in Appendix B. Here картинка 306represents position along the axis of the tube, картинка 307represents distance from the axis, and the angle represents the azimuth about the axis In this coordinate system the Laplace - фото 308represents the azimuth about the axis. In this coordinate system, the Laplace operator has the form

(B.7) Appendix Breviews the derivation of this expression In view of the symmetry of - фото 309

Appendix Breviews the derivation of this expression.

In view of the symmetry of the problem about the axis of the tube, we seek solutions of the form

(2.17) that is the axial component depends only on distance from the axis of the - фото 310

that is, the axial component depends only on distance from the axis of the tube, and the radial and azimuthal coordinates of the velocity vanish, as drawn in Figure 2.10. We allow the pressure to vary with картинка 311.

Exercise 2.10 Show that, under these conditions, the nonlinear term vanishes Work in Cartesian coordinates Figure 210 Profile of flow through - фото 312 vanishes. Work in Cartesian coordinates .

Figure 210 Profile of flow through a thin circular cylinder having radius - фото 313

Figure 2.10 Profile of flow through a thin circular cylinder having radius Since the flow is steady the NavierStokes equation therefore reduces to - фото 314.

Since the flow is steady, the Navier–Stokes equation therefore reduces to

Here we use the dimensionless form For a fluid velocity of the form 217 - фото 315

(Here we use the dimensionless form.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Mathematics of Fluid Flow Through Porous Media»

Представляем Вашему вниманию похожие книги на «The Mathematics of Fluid Flow Through Porous Media» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Mathematics of Fluid Flow Through Porous Media»

Обсуждение, отзывы о книге «The Mathematics of Fluid Flow Through Porous Media» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x